Skip to main content

Coupling Pedestrian Flow and Disease Contagion Models

  • Chapter
  • First Online:
Crowd Dynamics, Volume 4

Abstract

Modeling and simulation of disease spreading in pedestrian crowds recently gained increasing relevance. We review an approach from Abdul Salam et al. describing the influence of the crowd motion in a complex dynamical environment on the course of infection of the pedestrians. Additionally, we discuss in this manuscript possible extensions and amplifications. In particular, we reconsider the definition of the non-local infection rate, which is crucial for the coupling of pedestrian motion and disease spreading. To model the dynamics of the pedestrians, a kinetic equation for multi-group pedestrian flow based on a social force model coupled with an Eikonal equation is used. This model is coupled to a non-local SEIS contagion model for disease spread. We discuss different models for the infection rate. Besides the modelling of the influence of the number of contacts and contact duration on the spreading of the disease, the influence of the spreading of an aerosol cloud is modelled via a drift-diffusion model coupled to the pedestrian motion. Finally, hydrodynamic approximations of the coupled system are derived and simulations of the hydrodynamic model are carried out using a mesh-free particle method. Different numerical test cases are investigated. From a geometrical point of view we concentrate on uni- and bi-directional flow in a passage with and without obstacles. We investigate situations with a homogeneous flow, as well as a pedestrian crowd at rest and situations with alternating periods of slow and fast movement. The numerical results indicate that, it is important for the description of the disease spread to take into account a realistic model for the contact time. In particular in situations with periods of slow motion or a crowd at rest, a model including contact time duration and models for the spreading of the aerosol cloud are necessary to obtain reliable results. We also find, that for flows with an obstacle or bottleneck, the number of exposed pedestrians is considerably increased due to the denser pedestrian crowd surrounding the obstacle. In general, the numerical results show the importance of the geometry of the domain for the rate of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.S. Abdul Salam, W. Bock, A. Klar, S. Tiwari, Disease contagion models coupled to crowd motion and mesh-free simulation. Math. Models Methods Appl. Sci. 31(6), 1277–1295 (2021)

    Article  MathSciNet  Google Scholar 

  2. G. Albi, N. Bellomo, L. Fermo, S.Y. Ha, J. Kim, L. Pareschi, D. Poyato, J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives. Math. Models Methods Appl. Sci. 29, 1901–2005 (2019)

    Article  MathSciNet  Google Scholar 

  3. D. Amadoria, M. Di Francesco, The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions. Acta Math. Sci. 32, 259–280 (2012)

    Article  MathSciNet  Google Scholar 

  4. B. Aylaj, N. Bellomo, L. Gibelli, A. Reali, On a unified multiscale vision of behavioral crowds. Math. Models Methods Appl. Sci. 30, 1–22 (2020)

    Article  MathSciNet  Google Scholar 

  5. R. Bailo, J.A. Carrillo, P. Degond, Pedestrian models based on rational behaviour, in Crowd Dynamics, Volume 1 , ed. by L. Gibelli, N. Bellomo. Modeling and Simulation in Science, Engineering and Technology (Birkhäuser, Cham, 2018), pp. 259–292

    Google Scholar 

  6. N. Bellomo, A. Bellouquid, D. Knopoff, From the microscale to collective crowd dynamics. SIAM Multiscale Model. Simul. 11, 943–963 (2013)

    Article  MathSciNet  Google Scholar 

  7. N. Bellomo, L. Gibelli, N. Outada, On the interplay between behavioral dynamics and social interactions in human crowds. Kinet. Relat. Models 12, 397–409 (2019)

    Article  MathSciNet  Google Scholar 

  8. N. Bellomo, R. Bingham, M.A.J. Chaplain, G. Dosi, G. Forni, D.A. Knopoff, J. Lowengrub, R. Twarock, M.E. Virgillito, A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world. Math. Models Methods Appl. Sci. 30, 1591–1651 (2020)

    Article  MathSciNet  Google Scholar 

  9. W. Bock, T. Fattler, I. Rodiah, O. Tse, An analytic method for agent-based modeling of spatially inhomogeneous disease dynamics, in AIP Conference Proceedings, vol. 1871 (AIP Publishing LLC, 2017), p. 020008

    Google Scholar 

  10. W. Boscheri, G. Dimarco, L. Pareschi, Modeling and simulating the spatial spread of an epidemic through multiscale kinetic transport equations. Math. Models Methods Appl. Sci. 31, 1–39 (2021)

    Article  MathSciNet  Google Scholar 

  11. C. Burstedde, K. Klauck, A. Schadschneider, J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech. Appl. 295, 507–525 (2001)

    Article  Google Scholar 

  12. Q. Chen, W. Xu, A zero-equation turbulence model for indoor airflow simulation. Energy Build. 28(2), 137–144 (1998)

    Article  Google Scholar 

  13. R. Chowdhury, K. Heng, M.S.R. Shawon, G. Goh, D. Okonofua, C. Ochoa-Rosales, V. Gonzalez-Jaramillo, A. Bhuiya, D. Reidpath, S. Prathapan, S. Shahzad, Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries. Eur. J. Epidemiol. 35, 389–399 (2020)

    Article  Google Scholar 

  14. R.M. Colombo, M. Garavello, M. Lecureux-Mercier, A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22, 1150023 (2012)

    Article  MathSciNet  Google Scholar 

  15. E. Cristiani, B. Piccoli, A. Tosin, Multiscale Modeling of Pedestrian Dynamics (Springer, 2014)

    Google Scholar 

  16. P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettré, G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics. J. Stat. Phys. 152, 1033–1068 (2013)

    Article  MathSciNet  Google Scholar 

  17. P. Derjany, S. Namilae, D. Liu, A. Srinivasan, Multi-scale model for the optimal design of pedestrian queues to mitigate infectious disease spread. PLoS One 15, 1–21 (2020)

    Article  Google Scholar 

  18. M. Di Francesco, P.A. Markowich, J.F. Pietschmann, M.T. Wolfram, On the Hughes model for pedestrian flow: The one-dimensional case. J. Differential Equations 250, 1334–1362 (2011)

    Article  MathSciNet  Google Scholar 

  19. M. Di Francesco, S. Fagioli, M.D. Rosini, G. Russo, Deterministic particle approximation of the Hughes model in one space dimension. Kinet. Relat. Models 10, 215–237 (2017)

    Article  MathSciNet  Google Scholar 

  20. R. Etikyala, S. Göttlich, A. Klar, S. Tiwari, Particle methods for pedestrian flow models: From microscopic to nonlocal continuum models. Math. Models Methods Appl. Sci. 24, 2503–2523 (2014)

    Article  MathSciNet  Google Scholar 

  21. N.M. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunubá, G. Cuomo-Dannenburg, A. Dighe, Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand, Imperial College COVID-19 Response Team (2020)

    Google Scholar 

  22. A. Flor, C. Han, T. Xue, M. Aanjaneva, Interactive simulation of disease contagion in dynamic crowds, in MIG’21, Lausanne, Switzerland (2021)

    Google Scholar 

  23. T. Harweg, D. Bachmann, F. Weichert, Agent-based simulation of pedestrian dynamics for exposure time estimation in epidemic risk assessment. Z Gesundh Wiss. 2023; 31(2), 221–228 (2021). https://doi.org/10.1007/s10389-021-01489-y. Epub 2021 Apr 1. PMID: 33824850; PMCID: PMC8015933

  24. D. Helbing, A. Johansson, Pedestrian, crowd and evacuation dynamics, in Encyclopedia of Complexity and Systems Science, ed. by R. Meyers (Springer, New York, 2009), pp. 6476–6495

    Chapter  Google Scholar 

  25. D. Helbing, P. Molnar, Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  26. H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  27. L. Huang, S.C. Wong, M. Zhang, C.W. Shu, W.H. Lam, Revisiting Hughes’ dynamics continuum model for pedestrian flow and the development of an efficient solution algorithm. Transp. Res. B Methodol. 43, 127–141 (2009)

    Article  Google Scholar 

  28. R.L. Hughes, A continuum theory for the flow of pedestrians. Transp. Res. B Methodol. 36, 507–535 (2002)

    Article  Google Scholar 

  29. R.L. Hughes, The flow of human crowds. Ann. Rev. Fluid Mech. 35, 169–182 (2003)

    Article  MathSciNet  Google Scholar 

  30. D.P. Kennedy, J. Gläscher, J.M. Tyszka, R. Adolphs, Personal space regulation by the human amygdala. Nat. Neurosci. 12, 1226–1227 (2009)

    Article  Google Scholar 

  31. D. Kim, A. Quaini, A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinet. Relat. Models 12, 1273–1296 (2019)

    Article  MathSciNet  Google Scholar 

  32. D. Kim, A. Quaini, Coupling kinetic theory approaches for pedestrian dynamics and disease contagion in a confined environment. Math. Models Methods Appl. Sci. 30, 1839–1915 (2020)

    Article  MathSciNet  Google Scholar 

  33. D. Kim, A. Quaini, A 2D kinetic model for crowd dynamics with disease contagion, in Predicting Pandemics in a Globally Connected World, vol. 1. Modeling and Simulation in Science, Engineering and Technology (Birkhäuser, Cham, 2022)

    Google Scholar 

  34. A. Klar, S. Tiwari, A multi-scale particle method for mean field equations: the general case. SIAM Multiscale Model. Simul. 17, 233–259 (2019)

    Article  MathSciNet  Google Scholar 

  35. A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models. Math. Med. Biol. J. IMA 21, 75–83 (2004)

    Article  Google Scholar 

  36. N.V. Korovina, I.K. Zharova, O.B. Kudryashova, S.S. Titov, Diffusion coefficient when fine aerosol media propagate in a confined volume. EPJ Web Conf. 110, 01029 (2016)

    Article  Google Scholar 

  37. N.K. Mahato, A. Klar, S. Tiwari, A meshfree particle method for a vision-based macroscopic pedestrian model. Int. J. Adv. Eng. Sci. Appl. Math. 10, 41–53 (2018)

    Article  MathSciNet  Google Scholar 

  38. N.K. Mahato, A. Klar, S. Tiwari, Particle methods for multi-group pedestrian flow. Appl. Math. Model. 53, 447–461 (2018)

    Article  MathSciNet  Google Scholar 

  39. D.Y. Melesse, A.B. Gumel, Global asymptotic properties of an SEIRS model with multiple infectious stages. J. Math. Anal. Appl. 366, 202–217 (2010)

    Article  MathSciNet  Google Scholar 

  40. B. Piccoli, A. Tosin, Pedestrian flows in bounded domains with obstacles. Continuum Mech. Thermodyn. 21, 85–107 (2009)

    Article  MathSciNet  Google Scholar 

  41. M.L. Pöhlker, C. Pöhlker, O.O. Krüger, J. Förster, T. Berkemeier, W. Elbert, J. Fröhlich-Nowoisky, U. Pöschl, G. Bagheri, E. Bodenschatz, J.A. Huffman, S. Scheithauer, E. Mikhailov, Respiratory aerosols and droplets in the transmission of infectious diseases, Rev. Mod. Phys. 95(4), 045001 (2023)

    Google Scholar 

  42. P. Rutten, M.H. Lees, S. Klous, H. Heesterbeek, P.M.A. Sloot, Modelling the dynamic relationship between spread of infection and observed crowd movement patterns at large scale events. Sci. Rep. 12, 14825 (2022)

    Article  Google Scholar 

  43. M.J. Seitz, G. Koester, Natural discretization of pedestrian movement in continuous space. Phys. Rev. E 86, 046108 (2012)

    Article  Google Scholar 

  44. J.A. Sethian, Fast marching methods. SIAM Rev. 41, 199–235 (1999)

    Article  MathSciNet  Google Scholar 

  45. S. Tiwari, J. Kuhnert, Finite pointset method based on the projection method for simulations of the incompressible Navier-Stokes equations, in Meshfree Methods for Partial Differential Equations, ed. by M. Griebel, M.A. Schweitzer. Lecture Notes in Computational Science and Engineering, vol. 26 (Springer, Berlin, Heidelberg, 2003), pp. 373–387

    Google Scholar 

  46. S. Tiwari, J. Kuhnert, Modelling of two-phase flow with surface tension by finite pointset method(FPM). J. Comput. Appl. Math 203, 376–386 (2007)

    Article  MathSciNet  Google Scholar 

  47. A. Treuille, S. Cooper, Z. Popovic, Continuum crowds. ACM Trans. Graph. 25, 1160–1168 (2006)

    Article  Google Scholar 

  48. M. Twarogowska, P. Goatin, R. Duvigneau, Macroscopic modeling and simulations of room evacuation. Appl. Math. Model. 38, 5781–5795 (2014)

    Article  MathSciNet  Google Scholar 

  49. P.G. Walker, C. Whittaker, O. Watson, M. Baguelin, K. Ainslie, S. Bhatia, S. Bhatt, A. Boonyasiri, O. Boyd, L. Cattarino, Z. Cucunuba Perez, Report 12: The global impact of COVID-19 and strategies for mitigation and suppression. Imperial College COVID-19 Response Team (2020)

    Google Scholar 

  50. B. Zhao, Z. Zhang. X. Li, D. Huang, Comparison of diffusion characteristics of aerosol particles in different ventilated rooms by numerical method, ASHRAE Transactions: Research (2004)

    Google Scholar 

Download references

Acknowledgements

This work is supported by DFG grant KL 1105/30-1, by BMBF grant HYDAMO and by a DAAD grant for Bi-nationally supervised doctoral degrees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Klar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdul Salam, P.S., Bock, W., Klar, A., Tiwari, S. (2023). Coupling Pedestrian Flow and Disease Contagion Models. In: Bellomo, N., Gibelli, L. (eds) Crowd Dynamics, Volume 4. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-46359-4_9

Download citation

Publish with us

Policies and ethics