Skip to main content

Toward Better SSIM Loss for Unsupervised Monocular Depth Estimation

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Abstract

Unsupervised monocular depth learning generally relies on the photometric relation among temporally adjacent images. Most of previous works use both mean absolute error (MAE) and structure similarity index measure (SSIM) with conventional form as training loss. However, they ignore the effect of different components in the SSIM function and the corresponding hyperparameters on the training. To address these issues, this work proposes a new form of SSIM. Compared with original SSIM function, the proposed new form uses addition rather than multiplication to combine the luminance, contrast, and structural similarity related components in SSIM. The loss function constructed with this scheme helps result in smoother gradients and achieve higher performance on unsupervised depth estimation. We conduct extensive experiments to determine the relatively optimal combination of parameters for our new SSIM. Based on the popular MonoDepth approach, the optimized SSIM loss function can remarkably outperform the baseline on the KITTI-2015 outdoor dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bian, J.W., et al.: Unsupervised scale-consistent depth and ego-motion learning from monocular video. In: NeurIPS (2019)

    Google Scholar 

  2. Cao, Y.J., Lin, C., Li, Y.J.: Learning crisp boundaries using deep refinement network and adaptive weighting loss. IEEE T-MM 23, 761–771 (2021). https://doi.org/10.1109/TMM.2020.2987685

    Article  Google Scholar 

  3. Cao, Y.J., et al.: Learning generalized visual odometry using position-aware optical flow and geometric bundle adjustment. Pattern Recogn. 136, 109262 (2023)

    Article  Google Scholar 

  4. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV (2015)

    Google Scholar 

  5. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NeurIPS (2014)

    Google Scholar 

  6. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The Kitti dataset. IJRR (2013)

    Google Scholar 

  7. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth prediction. In: ICCV (2019)

    Google Scholar 

  8. Harris, C.R., et al.: Array programming with numpy. Nature 585(7825), 357–362 (2020)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  10. Hu, J., Ozay, M., Zhang, Y., Okatani, T.: Revisiting single image depth estimation: toward higher resolution maps with accurate object boundaries. In: WACV, pp. 1043–1051. IEEE (2019)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  12. Liu, C., Kumar, S., Gu, S., Timofte, R., Van Gool, L.: VA-depthnet: a variational approach to single image depth prediction. In: ICLR (2023)

    Google Scholar 

  13. Luo, C., et al.: Every pixel counts++: joint learning of geometry and motion with 3D holistic understanding. IEEE T-PAMI 42(10), 2624–2641 (2020). https://doi.org/10.1109/TPAMI.2019.2930258

    Article  Google Scholar 

  14. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  15. Peng, P., Yang, K.F., Luo, F.Y., Li, Y.J.: Saliency detection inspired by topological perception theory. Int. J. Comput. Vision 129(8), 2352–2374 (2021)

    Article  Google Scholar 

  16. Ranjan, A., et al.: Competitive collaboration: joint unsupervised learning of depth, camera motion, optical flow and motion segmentation. In: CVPR (2019)

    Google Scholar 

  17. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR, pp. 1874–1883 (2016)

    Google Scholar 

  18. Wang, G., Zhong, J., Zhao, S., Wu, W., Liu, Z., Wang, H.: 3D hierarchical refinement and augmentation for unsupervised learning of depth and pose from monocular video. IEEE Trans. Circuits Syst. Video Technol. (2022)

    Google Scholar 

  19. Yang, N., Stumberg, L., Wang, R., Cremers, D.: D3vo: deep depth, deep pose and deep uncertainty for monocular visual odometry. In: CVPR (2020)

    Google Scholar 

  20. Yin, Z., Shi, J.: Geonet: unsupervised learning of dense depth, optical flow and camera pose. In: CVPR (2018)

    Google Scholar 

  21. Yuan, W., Gu, X., Dai, Z., Zhu, S., Tan, P.: Neural window fully-connected CRFs for monocular depth estimation. In: CVPR, pp. 3916–3925 (2022)

    Google Scholar 

  22. Zhao, W., Liu, S., Shu, Y., Liu, Y.J.: Towards better generalization: joint depth-pose learning without posenet. In: CVPR (2020)

    Google Scholar 

  23. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: CVPR (2017)

    Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE T-IP 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

  25. Zhu, Z., et al.: Nice-slam: neural implicit scalable encoding for slam. In: CVPR, pp. 12786–12796 (2022)

    Google Scholar 

  26. Zoran, D., Isola, P., Krishnan, D., Freeman, W.T.: Learning ordinal relationships for mid-level vision. In: ICCV, pp. 388–396 (2015)

    Google Scholar 

  27. Zou, Y., Luo, Z., Huang, J.-B.: DF-net: unsupervised joint learning of depth and flow using cross-task consistency. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 38–55. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_3

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (62076055) and Sichuan Science and Technology Program (2022ZYD0112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjie Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Y., Luo, F., Li, Y. (2023). Toward Better SSIM Loss for Unsupervised Monocular Depth Estimation. In: Lu, H., et al. Image and Graphics. ICIG 2023. Lecture Notes in Computer Science, vol 14355. Springer, Cham. https://doi.org/10.1007/978-3-031-46305-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46305-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46304-4

  • Online ISBN: 978-3-031-46305-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics