Skip to main content

Crucial Events (CEs)

  • Chapter
  • First Online:
Crucial Event Rehabilitation Therapy

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

  • 42 Accesses

Abstract

CE time series are generated by critical dynamic interactions among units within complex dynamic ONs that after disruption spontaneously reorganizes themself into states of self-organized temporal criticality (SOTC). The time intervals between events are statistically independent and therefore the CE statistics are renewal having an inverse power law (IPL) for the waiting-time probability density function (PDF). The IPL index \(\mu \) is a direct measure of the complexity level the CE time series is also given by the fractional dimension \(D(=\mu )\); for \(2<D<3\) the CE time series has a finite average time between CEs (ergodic); whereas for \(1<D<2\) the time average between events diverges (non-ergodic). Information-gradients not energy-gradients dominate living networks, and one version of this role-reversal we call the Wiener Hypothesis (WH); another is related to the principle of complexity management (PCM) whereby the IPL index of the power spectral density \(\beta \) is related to the fractal dimension by \(D=3-\beta \). The transfer of information is restorative in the arm-in-arm walking of young therapists with elderly individuals having impaired gait and becomes the archetype for the CE rehabilitation therapy (CERT), with maximum information being exchanged between two interacting ONs having equal fractal dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Allegrini, P. Grigolini, P. Hamilton, L. Palatella, G. Raffaelli, Memory beyond memory in heart beating, a sign of a healthy physiological condition. Phys. Rev. E 65, 041926 (2002)

    Article  Google Scholar 

  2. P. Allegrini, L. Fronzoni, P. Grigolini, V. Latora, M.S. Mega, L. Palatella, A. Rapisarda, S. Vinciguerra, Detection of invisible and crucial events: from seismic fluctuations to the war against terrorism. Chaos Solitons Fractals 20, 77–85 (2004). https://doi.org/10.1016/s0960-0779(03)00430-2

    Article  MATH  Google Scholar 

  3. P. Allegrini, D. Menicucci, R. Bedini, L. Fronzoni, A. Gemignani, P. Grigolini, B.J. West, Spontaneous brain activity as a source of ideal 1/f noise. Phys. Rev. E 80, 061914 (2009)

    Article  Google Scholar 

  4. G. Aquino, M. Bologna, P. Grigolini, B.J. West, Beyond the death of linear response theory: criticality of the 1/-noise condition. Phys. Rev. Lett. 105, 040601 (2010)

    Article  Google Scholar 

  5. G. Aquino, M. Bologna, P. Grigolini, B.J. West, Transmission of information between complex systems: 1/f resonance. Phys. Rev. E 83, 051130 (2011)

    Article  Google Scholar 

  6. P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 381 (1987)

    Article  Google Scholar 

  7. F. Barbi, M. Bologna, P. Grigolini, Linear response to perturbation of nonexponential renewal processes. Phys. Rev. Lett. 95, 220601 (2005)

    Article  Google Scholar 

  8. E. Barkai, Y. Garini, R. Metzler, Strange kinetics of single molecules in living cells. Phys. Today 65, 29 (2012)

    Article  Google Scholar 

  9. G. Bohara, D. Lambert, B.J. West, P. Grigolini, Crucial events, randomness and multi-fractality in heart beats. Phys. Rev. E 96, 06216 (2017)

    Article  Google Scholar 

  10. J.P. Bouchaud, Weak ergodicity breaking and aging in disordered systems. Journal of De Physique I 2(9), 1705–1713 (1992)

    Google Scholar 

  11. D. Deligniéres, K. Torre, L. Lemaine, Fractal models for event- based and dynamical timers. Acta Psychol. 127, 382–397 (2008)

    Article  Google Scholar 

  12. R. Failla, P. Grigolini, M. Ignaccolo, A. Schwettmann, Random growth of interfaces as a subordinated process. Phys. Rev. E 70, 010101 (2004)

    Article  Google Scholar 

  13. W. Feller, Fluctuation theory of recurrent events. Trans. Am. Math. Soc. 67, 98 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Heinsalu, M. Patriarca, I. Goychuk, P. Hänggi, Use and abuse of a fractional Fokker–Planck dynamics for time-dependent driving. Phys. Rev. Lett. 99, 120602 (2007)

    Article  Google Scholar 

  15. C.T. Kello, B.C. Beltz, J.G. Holden, G.C. Van Orden, The emergent coordination of cognitive function. J. Exp. Psychol. 136, 551 (2007)

    Article  Google Scholar 

  16. R. Kubo, M. Toda, N. Hashitusume, Statistical Physics (Springer, Berlin, 1985)

    Google Scholar 

  17. W. Li, D. Holste, Universal 1/f noise, crossovers of scaling exponents, and chromosome-specific patterns of guanine-cytosine content in DNA sequences of the human genome. Phys. Rev. E 71, 041910 (2005)

    Article  Google Scholar 

  18. E. Lipiello, L. De Arcangelis, C. Godano, Memory in self- organized criticality. Europhys. Lett. 72, 678 (2005)

    Article  Google Scholar 

  19. M. Magdziarz, A. Weon, J. Klafter, Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: the case of a time-dependent force. Phys. Rev. Lett. 101, 210601 (2008)

    Article  Google Scholar 

  20. K. Mahmoodi, B.J. West, P. Grigolini, Self-organizing complex networks: individual versus global rules. Front. Physiol. 8, 478 (2017)

    Article  Google Scholar 

  21. A. Pease, K. Mahmoodi, B.J. West, Complexity measures of music. Chaos Solitons Fractals 108, 82 (2018)

    Article  Google Scholar 

  22. T.J.P. Penna, P.M.C. de Oliveira, J.C. Sartorelli, W.M. Goncalves, R.D. Pinto, Long-range anti-correlation and non-Gaussian behavior of a leaky faucet. Phys. Rev. E 52, R2168–R2171 (1995)

    Article  Google Scholar 

  23. N. Piccinini, D. Lambert, B.J. West, M. Bologna, P. Grigolini, Nonergodic complexity management. Phys. Rev. E 93, 062301 (2016)

    Article  Google Scholar 

  24. Y. Pomeau, P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189 (1980)

    Article  MathSciNet  Google Scholar 

  25. P. Pramukkul, A. Svenkeson, P. Grigolini, M. Bologna B.J. West, Complexity and the fractional calculus. Adv. Math. Phys. 2013, 498789. http://dx.doi.org/10.1155/2013/498789

  26. E. Schrödinger, What is Life? The Physical Aspect of the Living Cell, First pub. 1944 (Cambridge University Press, Cambridge, 1967)

    Google Scholar 

  27. C.E. Shannon, A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423; ibid. 623–656 (1948)

    Google Scholar 

  28. A.I. Shushin, Effect of a time-dependent field on sub-diffusing particles. Phys. Rev. E 78, 051121 (2008)

    Article  MathSciNet  Google Scholar 

  29. I.M. Sokolov, J. Klafter, Field-induced dispersion and subdiffusion. Phys. Rev. Lett. 97, 140602 (2006)

    Article  Google Scholar 

  30. Z.-Y. Su, T. Wu, Music walk, fractal geometry in music. Phys. A 380, 418 (2007)

    Article  MathSciNet  Google Scholar 

  31. D.J.T. Sumpter, The principles of collective animal behaviour. Philos. Trans. R. Soc. B 361, 5 (2006)

    Article  Google Scholar 

  32. E. Tagliazucchi, P. Balenzuela, D. Fraiman, D.R. Chialvo, Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Front. Physiol. 3, 15 (2012)

    Article  Google Scholar 

  33. R. Tuladhar, G. Bohara, P. Grigolini, B.J West, Meditation- induced coherence and crucial events. Front. Physiol. 9, 626 (2018)

    Google Scholar 

  34. M. Turalska, B. J. West, P. Grigolini, Temporal complexity of the order parameter at the phase transition. Phys. Rev. E 83, 061142 (2011)

    Article  Google Scholar 

  35. R.F. Voss, J. Clarke, 1/f-noise in music and speech. Nature (London) 258, 317 (1975)

    Google Scholar 

  36. D. Wang, Habituation, in The Handbook of Brain Theory and Neural Networks, ed. by M.A. Arbib (MIT Press, 1995), p. 441

    Google Scholar 

  37. A. Weron, M. Magdziarz, K. Weron, Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker-Planck equation. Phys. Rev. E 77, 036704 (2008)

    Article  Google Scholar 

  38. B.J. West, W. Deering, The Lure of Modern Science. Studies in Nonlinear Phenomena in Life Science, vol. 3 (World Scientific, Singapore, 1995)

    Google Scholar 

  39. B.J. West, M. Latka, Fractional Langevin model of gait variability. J. Neuro. Eng. Rehab. 2, 24 (2005). https://doi.org/10.1186/1743-0003-2-4

    Article  Google Scholar 

  40. B.J. West, P. Grigolini, Sun-climate complexity linking. Phys. Rev. Lett. 100, 088501 (2008)

    Article  Google Scholar 

  41. B.J. West, E.L. Geneston, P. Grigolini, Maximizing information exchange between complex networks. Phys. Rep. 468, 1–99 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. B.J. West, P. Grigolini, Habituation and 1/f-noise. Phys. A 389, 5706 (2010)

    Article  Google Scholar 

  43. B.J. West, P. Grigolini, Crucial Events; Why Are Catastrophes Never Expected? (World Scientific, New Jersey, 2021)

    Book  MATH  Google Scholar 

  44. B.J. West, The fractal tapestry of life: III multifractals entail the fractional calculus. Fractals andFract. 2, 845495 (2022)

    Google Scholar 

  45. N. Wiener, Time, Communication and the nervous system. Proc. N. Y. Acad. Sci. 50, 197–220 (1948)

    Article  MathSciNet  Google Scholar 

  46. M. Zare, P. Grigolini, Cooperation in neural systems: bridging complexity and periodicity. Phys. Rev. E 86, 051918 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

West, B.J., Grigolini, P., Bologna, M. (2023). Crucial Events (CEs) . In: Crucial Event Rehabilitation Therapy. SpringerBriefs in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-031-46277-1_2

Download citation

Publish with us

Policies and ethics