Skip to main content

Unlocking the Potential of Generative Artificial Intelligence in Drug Discovery

  • Chapter
  • First Online:
Applications of Generative AI

Abstract

Deep generative models have been widely employed across diverse fields, ranging from image and video analysis to natural language processing. In combination with the increasing computational power and abundant data resources available in the public domain, generative models have made significant advancements into the area of drug discovery and development. In particular, generative models are being extensively explored for de novo design of novel molecules, endowed with desirable physicochemical properties or biological activity, thereby accelerating the hit discovery phase by more rapidly sampling the chemical space of drug-like compounds. However, despite their considerable potential, these methods do have limitations that warrant consideration. For instance, they tend to generate compounds that may exhibit chemical instability, pose challenges in synthesis, or bear resemblance to existing drugs, thereby raising concerns regarding patentability. Furthermore, the experimental validation of the generated molecules through exemplary case studies remains limited. This chapter focuses on the application of generative models in de novo drug design. Firstly, we provide a brief introduction to commonly used generative models, such as recurrent neural networks, autoencoders, generative adversarial networks, as well as transfer learning and reinforcement learning techniques. Secondly, we conduct a comprehensive review of the latest developments in utilizing various generative models for drug discovery. This includes an analysis of benchmarks, metrics, and performance evaluation methods through the examination of diverse case studies. Finally, we shed light on the challenges associated with generative methods and discuss future directions in this dynamic and rapidly evolving field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kiriiri, G. K., Njogu, P. M., & Mwangi, A. N. (2020). Exploring different approaches to improve the success of drug discovery and development projects: A review. Futur J Pharm Sci, 6, 1–12. https://doi.org/10.1186/s43094-020-00047-9

    Article  Google Scholar 

  2. Waring, M. J., Arrowsmith, J., Leach, A. R., Leeson, P. D., Mandrell, S., Owen, R. M., Pairaudeau, G., Pennie, W. D., Pickett, S. D., Wang, J., Wallace, O., Weir, A. (2015). An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nature Reviews Drug Discovery, 14, 475–486. https://doi.org/10.1038/nrd4609

    Article  Google Scholar 

  3. Lavecchia, A., & Giovanni, C. (2013). Virtual screening strategies in drug discovery: A critical review. Current Medicinal Chemistry, 20, 2839–2860.

    Article  Google Scholar 

  4. Cerchia, C., & Lavecchia, A. (2023). New avenues in artificial-intelligence-assisted drug discovery. Drug Discovery Today, 28, 103516. https://doi.org/10.1016/j.drudis.2023.103516

  5. Bohacek, R. S., McMartin, C., & Guida, W. C. (1996). The art and practice of structure-based drug design: A molecular modeling perspective. Medicinal Research Reviews, 16, 3–50.

    Article  Google Scholar 

  6. Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  7. Bond-Taylor, S., Leach, A., Long, Y., & Willcocks, C. G. (2022). Deep generative modelling: A comparative review of VAEs, GANs, normalizing flows, energy-based and autoregressive models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 7327–7347. https://doi.org/10.1109/TPAMI.2021.3116668

    Article  Google Scholar 

  8. Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised representation learning with deep convolutional generative adversarial networks. 4th International Conference on Learning Representation ICLR 2016—Conf Track Proc.

    Google Scholar 

  9. Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., & Bengio, S. (2016). Generating sentences from a continuous space. CoNLL 2016—20th SIGNLL Conference on Computational Natural Language Learning Proc, pp. 10–21. https://doi.org/10.18653/v1/k16-1002

  10. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. arXiv Prepr arXiv160903499

    Google Scholar 

  11. Engel, J., Resnick, C., Roberts, A., Dieleman, S., Eck, D., Simonyan, K., & Norouzi, M. (2017). Neural audio synthesis of musical notes with WaveNet autoencoders. 34th International Conference on Machine Learning, ICML 2017. PMLR, pp. 1771–1780.

    Google Scholar 

  12. Kusner, M. J., Paige, B., & Hemández-Lobato, J. M. (2017). Grammar variational autoencoder. 34th International Conference on Machine Learning, ICML 2017. PMLR, pp. 3072–3084.

    Google Scholar 

  13. Segler, M. H. S., Kogej, T., Tyrchan, C., & Waller, M. P. (2018). Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Science, 4, 120–131. https://doi.org/10.1021/acscentsci.7b00512

    Article  Google Scholar 

  14. Jin, W., Barzilay, R., & Jaakkola, T. (2021). Chapter 11: Junction tree variational autoencoder for molecular graph generation. RSC Drug Discovery Series. PMLR, pp. 228–249.

    Google Scholar 

  15. Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golovanov, S., Tatanov, O., Belyaev, S., Kurbanov, R., Artamonov, A., Aladinskiy, V., Veselov, M., Kadurin, A., Johansson, S., Chen, H., Nikolenko, S., Aspuru-Guzik, A., & Zhavoronkov, A. (2020) Molecular sets (MOSES): A benchmarking platform for molecular generation models. Frontiers in Pharmacology, 11.

    Google Scholar 

  16. Brown, N., Fiscato, M., Segler, M. H. S., & Vaucher, A. C. (2019). GuacaMol: Benchmarking models for de Novo molecular design. Journal of Chemical Information and Modeling, 59, 1096–1108. https://doi.org/10.1021/acs.jcim.8b00839

    Article  Google Scholar 

  17. Bilodeau, C., Jin, W., Jaakkola, T., Barzilay, R., Jensen, K. F. (2022). Generative models for molecular discovery: Recent advances and challenges. Wiley Interdisciplinary Reviews Computational Molecular Science, 12, e1608. https://doi.org/10.1002/wcms.1608

    Article  Google Scholar 

  18. Cheng, Y., Gong, Y., Liu, Y., Song, B., & Zou, Q. (2021). Molecular design in drug discovery: A comprehensive review of deep generative models. Briefings in Bioinformatics, 22, bbab344. https://doi.org/10.1093/bib/bbab344

  19. Tong, X., Liu, X., Tan, X., Li, X., Jiang, J., Xiong, Z., Xu, T., Jiang, H., Qiao, N., Zheng, M. (2021). Generative models for de Novo drug design. Journal of Medicinal Chemistry, 64, 14011–14027. https://doi.org/10.1021/acs.jmedchem.1c00927

    Article  Google Scholar 

  20. Wang, M., Wang, Z., Sun, H., Wang, J., Shen, C., Weng, G., Chai, X., Li, H., Cao, D., Hou, T. (2022). Deep learning approaches for de novo drug design: An overview. Current Opinion in Structural Biology, 72, 135–144. https://doi.org/10.1016/j.sbi.2021.10.001

    Article  Google Scholar 

  21. Meyers, J., Fabian, B., & Brown, N. (2021). De novo molecular design and generative models. Drug Discovery Today, 26, 2707–2715. https://doi.org/10.1016/j.drudis.2021.05.019

    Article  Google Scholar 

  22. Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. Nature Chemistry, 4, 90–98. https://doi.org/10.1038/nchem.1243

    Article  Google Scholar 

  23. Berger, M. L., & Doban, V. (2014). Big data, advanced analytics and the future of comparative effectiveness research. Journal of Comparative Effectiveness Research, 3, 167–176. https://doi.org/10.2217/cer.14.2

    Article  Google Scholar 

  24. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23, 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039

    Article  Google Scholar 

  25. Lavecchia, A. (2019). Deep learning in drug discovery: Opportunities, challenges and future prospects. Drug Discovery Today, 24, 2017–2032. https://doi.org/10.1016/j.drudis.2019.07.006

    Article  Google Scholar 

  26. Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., Tekade, R. K. (2021). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26, 80–93. https://doi.org/10.1016/j.drudis.2020.10.010

    Article  Google Scholar 

  27. Lavecchia, A. (2015). Machine-learning approaches in drug discovery: Methods and applications. Drug Discovery Today, 20, 318–331. https://doi.org/10.1016/j.drudis.2014.10.012

    Article  Google Scholar 

  28. Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T. F. G., Qin, C., Zidek, A., Nelson, A., Bridgland, A., Penedones, H., Petersen, S., Simonyan, K., Crossan, S., Jones, D. T., Silver, D., Kavukcuoglu, K., Hassabis, D., Senior, A. W. (2018). De novo structure prediction with deep-learning based scoring. Thirteen Critical Assessment of Technical Protein Structure, 2, 1–2.

    Google Scholar 

  29. Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18, 463–477. https://doi.org/10.1038/s41573-019-0024-5

    Article  Google Scholar 

  30. Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I., Leach, A. R. (2017). The ChEMBL database in 2017. Nucleic Acids Research, 45, D945–D954. https://doi.org/10.1093/nar/gkw1074

    Article  Google Scholar 

  31. Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Félix, E., Magariños, M. P., Mosquera, J. F., Mutowo, P., Nowotka, M., Gordillo-Marañón, M., Hunter, F., Junco, L., Mugumbate, G., Rodriguez-Lopez, M., Atkinson, F., Bosc, N., Radoux, C. J., Segura-Cabrera, A., Hersey, A., Leach, A. R. (2019). ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Research, 47, D930–D940. https://doi.org/10.1093/nar/gky1075

    Article  Google Scholar 

  32. Sterling, T., & Irwin, J. J. (2015). ZINC 15–ligand discovery for everyone. Journal of Chemical Information and Modeling, 55, 2324–2337.

    Article  Google Scholar 

  33. Irwin, J. J., Tang, K. G., Young, J., Dandarchuluun, C., Wong, B. R., Khurelbaatar, M., Moroz, Y. S., Mayfield, J., Sayle, R. A. (2020). ZINC20—A free ultralarge-scale chemical database for ligand discovery. Journal of Chemical Information and Modeling, 60, 6065–6073.

    Article  Google Scholar 

  34. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242. https://doi.org/10.1093/nar/28.1.235

    Article  Google Scholar 

  35. Berman, H. M. (2008). The protein data bank: A historical perspective. Acta Crystallographica Section A, 64, 88–95.

    Article  Google Scholar 

  36. Wang, R., Fang, X., Lu, Y., & Wang, S. (2004). The PDBbind database: Collection of binding affinities for protein-ligand complexes with known three-dimensional structures. Journal of Medicinal Chemistry, 47, 2977–2980. https://doi.org/10.1021/jm030580l

    Article  Google Scholar 

  37. Liu, Z., Li, Y., Han, L., Li, J., Liu, J., Zhao, Z., Nie, W., Liu, Y., Wang, R. (2015). PDB-wide collection of binding data: Current status of the PDBbind database. Bioinformatics, 31, 405–412.

    Article  Google Scholar 

  38. Grygorenko, O. O., Radchenko, D.S., Dziuba, I., Chuprina, A., Gubina, K. E., Moroz, Y. S. (2020). Generating multibillion chemical space of readily accessible screening compounds. iScience, 23, 101681. https://doi.org/10.1016/j.isci.2020.101681

  39. Ramakrishnan, R., Dral, P. O., Rupp, M., & Von Lilienfeld, O. A. (2014). Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1, 140022. https://doi.org/10.1038/sdata.2014.22

    Article  Google Scholar 

  40. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51, D1373–D1380. https://doi.org/10.1093/nar/gkac956

    Article  Google Scholar 

  41. Ruddigkeit, L., Van Deursen, R., Blum, L. C., & Reymond, J.-L. (2012). Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. Journal of Chemical Information and Modeling, 52, 2864–2875.

    Article  Google Scholar 

  42. Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., Woolsey, J. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34, D668–D672.

    Article  Google Scholar 

  43. Weininger, D. (1988). SMILES, a chemical language and information system: 1: Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Sciences, 28, 31–36. https://doi.org/10.1021/ci00057a005

    Article  Google Scholar 

  44. Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., Aspuru-Guzik, A. (2018). Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Science, 4, 268–276. https://doi.org/10.1021/acscentsci.7b00572

    Article  Google Scholar 

  45. Olivecrona, M., Blaschke, T., Engkvist, O., & Chen, H. (2017). Molecular de-novo design through deep reinforcement learning. Journal of Cheminformatics, 9, 1–14. https://doi.org/10.1186/s13321-017-0235-x

    Article  Google Scholar 

  46. Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001). Introduction to automata theory, languages, and computation, 2nd edition. ACM SIGACT News, 32, 60–65. https://doi.org/10.1145/568438.568455

  47. Yoshikawa, N., Terayama, K., Sumita, M., Homma, T., Oono, K., Tsuda, K. (2018). Population-based de novo molecule generation, using grammatical evolution. Chemistry Letters, 47, 1431–1434. https://doi.org/10.1246/cl.180665

    Article  Google Scholar 

  48. Knuth, D. E. (1968). Semantics of context-free languages. Mathmatical Systems theory, 2, 127–145.

    Article  MathSciNet  Google Scholar 

  49. Dai, H., Tian, Y., Dai, B., Skiena, S., Song, L. (2018). Syntax-directed variational autoencoder for structured data. 6th International Conference on Learning Representation ICLR 2018—Conf Track Proc.

    Google Scholar 

  50. Janz, D., Van Der Westhuizen, J, Paige, B., Paige, B., Kusner, M. J., Hernández-Lobato, J. M. (2018). Learning a generative model for validity in complex discrete structures. 6th International Conference Learning Representation ICLR 2018—Conf Track Proc.

    Google Scholar 

  51. O’Boyle, N. M., & Dalke, A. (2018). DeepSMILES: An adaptation of SMILES for use in machine-learning of chemical structures. ChemRxiv, 1–9.

    Google Scholar 

  52. Krenn, M., Häse, F., Nigam, A. K., Friederich, P., Aspuru-Guzik, A. (2020). Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation. Machine Learning: Science and Technology, 1, 45024. https://doi.org/10.1088/2632-2153/aba947

    Article  Google Scholar 

  53. Todeschini, R., & Consonni, V. (2008). Handbook of molecular descriptors (Vol.11). Wiley.

    Google Scholar 

  54. Faulon, J. L., & Bender, A. (2010). Handbook of chemoinformatics algorithms. CRC Press.

    Book  Google Scholar 

  55. Leguy, J., Cauchy, T., Glavatskikh, M., Duval, B., Da Mota, B. (2020). EvoMol: A flexible and interpretable evolutionary algorithm for unbiased de novo molecular generation. Journal of Cheminformatics, 12, 1–19. https://doi.org/10.1186/s13321-020-00458-z

    Article  Google Scholar 

  56. Polishchuk, P. (2020). CReM: Chemically reasonable mutations framework for structure generation. Journal of Cheminformatics, 12, 1–18. https://doi.org/10.1186/s13321-020-00431-w

    Article  Google Scholar 

  57. Jensen, J. H. (2019). A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space. Chemical Science, 10, 3567–3572. https://doi.org/10.1039/c8sc05372c

    Article  Google Scholar 

  58. Simonovsky, M., & Komodakis, N. (2017). Dynamic edge-conditioned filters in convolutional neural networks on graphs. Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 29–38.

    Google Scholar 

  59. Köbler, J., Schöning, U., & Torán, J. (1993). The graph isomorphism Problem: Its structural complexity. Springer Science & Business Media.

    Google Scholar 

  60. Gebauer, N. W. A., Gastegger, M., & Schütt, K. T. (2019). Symmetry-adapted generation of 3D point sets for the targeted discovery of molecules. Advances in Neural Information Processing Systems, 32.

    Google Scholar 

  61. Simm, G. N. C., Pinsler, R., Hernández-Lobato, J. M. (2020). Reinforcement learning for molecular design guided by quantum mechanics. In A. Singh (Eds.), 37th International Conference on Machine Learning, ICML 2020 (pp. 8906–8916). PMLR.

    Google Scholar 

  62. Hawkins, P. C. D., Skillman, A. G., Warren, G. L., Ellingson, B. A., Stahl, M. T. (2010). Conformer generation with OMEGA: Algorithm and validation using high quality structures from the protein databank and Cambridge structural database. Journal of Chemical Information and Modeling, 50, 572–584. https://doi.org/10.1021/ci100031x

    Article  Google Scholar 

  63. Riniker, S. (2017). Molecular dynamics fingerprints (MDFP): Machine learning from MD data to predict free-energy differences. Journal of Chemical Information and Modeling, 57, 726–741. https://doi.org/10.1021/acs.jcim.6b00778

    Article  Google Scholar 

  64. Simm, G. N. C., & Hernández-Lobato, J. M. (2020). A generative model for molecular distance geometry. 37th International Conference on Machine Learning ICML 2020 PartF16814, pp. 8896–8905.

    Google Scholar 

  65. Xu, M., Luo, S., Bengio, Y., Peng, J., Tang, J. (2021). Learning neural generative dynamics for molecular conformation generation. ICLR 2021—9th International Conference on Learning Representation.

    Google Scholar 

  66. Ganea, O. E., Pattanaik, L., Coley, C. W., Barzilay, R., Jensen, K. F., Green, W. H., Jaakkola, T. S. (2021). GEOMOL: Torsional Geometric Generation of Molecular 3D Conformer Ensembles. Advances in Neural Information Processing Systems, 17, 13757–13769.

    Google Scholar 

  67. Axelrod, S., & Gómez-Bombarelli, R. (2022). GEOM, energy-annotated molecular conformations for property prediction and molecular generation. Sci Data, 9, 185. https://doi.org/10.1038/s41597-022-01288-4

    Article  Google Scholar 

  68. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386–408. https://doi.org/10.1037/h0042519

    Article  Google Scholar 

  69. Mikolov, T., Karafiát, M., Burget L, Jan, C., Khudanpur, S. (2010). Recurrent neural network based language model. Proceedings of the 11th Annual Conference of the International Speech Communication Association, INTERSPEECH 2010. Makuhari, pp. 1045–1048.

    Google Scholar 

  70. Pérez-Ortiz, J. A., Gers, F. A., Eck, D., & Schmidhuber, J. U. (2003). Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. Neural Networks, 16, 241–250. https://doi.org/10.1016/S0893-6080(02)00219-8

    Article  Google Scholar 

  71. Sutskever, I., Martens, J., & Hinton, G. (2011). Generating text with recurrent neural networks. Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pp. 1017–1024.

    Google Scholar 

  72. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9, 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  73. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. EMNLP 2014—2014 Conference on Empirical Methods Natural Language Process Proc Conf, pp. 1724–1734. https://doi.org/10.3115/v1/d14-1179

  74. Chollet, F. (2018). Deep learning with Python. Shelter Island New York Manning Publ Co.

    Google Scholar 

  75. Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. 2nd International Conference Learning Representation ICLR 2014—Conf Track Proc.

    Google Scholar 

  76. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B. (2015). Adversarial autoencoders. arXiv Prepr arXiv151105644

    Google Scholar 

  77. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63, 139–144.

    Article  Google Scholar 

  78. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv Prepr arXiv14111784

    Google Scholar 

  79. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C. (2018). A survey on deep transfer learning. Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4–7, 2018, Proceedings, Part III 27. Springer, pp. 270–279.

    Google Scholar 

  80. Houlsby, N., Huszár, F., Ghahramani, Z., & Lengyel, M. (2011). Bayesian active learning for classification and preference learning. arXiv Prepr arXiv11125745.

    Google Scholar 

  81. Rogers, D., & Hahn, M. (2010). Extended-connectivity fingerprints. Journal of Chemical Information and Modeling, 50, 742–754.

    Article  Google Scholar 

  82. Consonni, V., & Todeschini, R. (2009). Molecular descriptors for chemoinformatics: Volume I: alphabetical listing/Volume II: appendices, references. Wiley.

    Google Scholar 

  83. Sabando, M. V., Ponzoni, I., Milios, E. E., & Soto, A. J. (2022). Using molecular embeddings in QSAR modeling: Does it make a difference? Briefings in Bioinformatics, 23, bbab365.

    Google Scholar 

  84. Chithrananda, S., Grand, G., & Ramsundar, B. (2020). Chemberta: Large-scale self-supervised pretraining for molecular property prediction. arXiv Prepr arXiv201009885

    Google Scholar 

  85. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A. (2017). Mastering the game of go without human knowledge. Nature, 550, 354–359.

    Article  Google Scholar 

  86. Popova, M., Isayev, O., & Tropsha, A. (2018). Deep reinforcement learning for de novo drug design. Science Advances, 4, eaap7885.

    Google Scholar 

  87. Ertl, P., & Schuffenhauer, A. (2009). Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics, 1, 1–11.

    Article  Google Scholar 

  88. Wang, J., Hsieh, C.-Y., Wang, M., Wang, X., Wu, Z., Jiang, D., Liao, B., Zhang, X., Yang, B., He, Q. (2021). Multi-constraint molecular generation based on conditional transformer, knowledge distillation and reinforcement learning. Nature Machine Intelligence, 3, 914–922.

    Article  Google Scholar 

  89. Gottipati, S. K., Sattarov, B., Niu, S., Pathak, Y., Wei, H., Liu, S., Blackburn, S., Thomas, K., Coley, C., Tang, J. (2020). Learning to navigate the synthetically accessible chemical space using reinforcement learning. International Conference on Machine Learning. PMLR, pp. 3668–3679.

    Google Scholar 

  90. Degen, J., Wegscheid-Gerlach, C., Zaliani, A., & Rarey, M. (2008). On the art of compiling and using “drug-like” chemical fragment spaces. ChemMedChem, 3, 1503–1507. https://doi.org/10.1002/cmdc.200800178

    Article  Google Scholar 

  91. Bemis, G. W., & Murcko, M. A. (1996). The properties of known drugs. 1. Molecular frameworks. Journal of Medicinal Chemistry, 39, 2887–2893. https://doi.org/10.1021/jm9602928

    Article  Google Scholar 

  92. Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., Klambauer, G. (2018). Fréchet ChemNet distance: A metric for generative models for molecules in drug discovery. Journal of Chemical Information and Modeling, 58, 1736–1741. https://doi.org/10.1021/acs.jcim.8b00234

    Article  Google Scholar 

  93. Kosugi, T., & Ohue, M. (2021). Quantitative estimate index for early-stage screening of compounds targeting protein-protein interactions. International Journal of Molecular Sciences, 22, 10925.

    Article  Google Scholar 

  94. Blaschke, T., Arús-Pous, J., Chen, H., Margreitter, C., Tyrchan, C., Engkvist, O., Papadopoulos, K., Patronov, A. (2020). REINVENT 2.0: An AI tool for de Novo drug design. Journal of Chemical Information and Modeling, 60, 5918–5922. https://doi.org/10.1021/acs.jcim.0c00915

    Article  Google Scholar 

  95. Skalic, M., Sabbadin, D., Sattarov, B., Sciabola, S., De Fabritiis, G. (2019). From target to drug: Generative modeling for the multimodal structure-based ligand design. Molecular Pharmaceutics, 16, 4282–4291. https://doi.org/10.1021/acs.molpharmaceut.9b00634

    Article  Google Scholar 

  96. Ragoza, M., Masuda, T., & Koes, D. R. (2022). Generating 3D molecules conditional on receptor binding sites with deep generative models. Chemical Science, 13, 2701–2713. https://doi.org/10.1039/d1sc05976a

    Article  Google Scholar 

  97. Wang, M., Hsieh, C.-Y., Wang, J., Wang, D., Weng, G., Shen, C., Yao, X., Bing, Z., Li, H., Cao, D., Hou, T. (2022). RELATION: A deep generative model for structure-based de novo drug design. Journal of Medicinal Chemistry, 65, 9478–9492. https://doi.org/10.1021/acs.jmedchem.2c00732

    Article  Google Scholar 

  98. Wang, M., Wang, J., Weng, G., Kang, Y., Pan, P., Li, D., Deng, Y., Li, H., Hsieh, C. Y., Hou, T. (2022). ReMODE: A deep learning-based web server for target-specific drug design. Journal of Cheminformatics, 14, 84. https://doi.org/10.1186/s13321-022-00665-w

    Article  Google Scholar 

  99. Hadfield, T. E., Imrie, F., Merritt, A., Birchall, K., Deane, C. M. (2021). Incorporating target-specific pharmacophoric information into deep generative models for fragment elaboration. Journal of Chemical Information and Modeling, 62, 2280–2292. https://doi.org/10.1021/acs.jcim.1c01311

    Article  Google Scholar 

  100. Xie, W., Wang, F., Li, Y., Lai, L., Pei, J. (2022). Advances and challenges in de novo drug design using three-dimensional deep generative models. Journal of Chemical Information and Modeling, 62, 2269–2279. https://doi.org/10.1021/acs.jcim.2c00042

    Article  Google Scholar 

  101. Zhang, J., & Chen, H. (2022). De novo molecule design using molecular generative models constrained by ligand-protein interactions. Journal of Chemical Information and Modeling, 62, 3291–3306. https://doi.org/10.1021/acs.jcim.2c00177

    Article  Google Scholar 

  102. Ciepliński, T., Danel, T., Podlewska, S., & Jastrzȩbski, S. (2023). Generative models should at least be able to design molecules that dock well: A new benchmark. Journal of Chemical Information and Modeling, 63, 3238–3247. https://doi.org/10.1021/acs.jcim.2c01355

    Article  Google Scholar 

  103. Guo, J., Janet, J. P., Bauer, M. R., Nittinger, E., Giblin, K. A., Papadopoulos, K., Voronov, A., Patronov, A., Engkvist, O., Margreitter, C. (2021). DockStream: A docking wrapper to enhance de novo molecular design. Journal of Cheminformatics, 13, 89. https://doi.org/10.1186/s13321-021-00563-7

    Article  Google Scholar 

  104. García-Ortegón, M., Simm, G. N. C., Tripp, A. J., Hernández-Lobato, J. M., Bender, A., Bacallado, S. (2022). DOCKSTRING: Easy molecular docking yields better benchmarks for ligand design. Journal of Chemical Information and Modeling, 62, 3486–3502. https://doi.org/10.1021/acs.jcim.1c01334

    Article  Google Scholar 

  105. Tan, X., Li, C., Yang, R., Zhao, S., Li, F., Li, X., Chen, L., Wan, X., Liu, X., Yang, T., Tong, X., Xu, T., Cui, R., Jiang, H., Zhang, S., Liu, H., Zheng, M. (2022). Discovery of pyrazolo[3,4-d] pyridazinone derivatives as selective DDR1 inhibitors via deep learning based design, synthesis, and biological evaluation. Journal of Medicinal Chemistry, 65, 103–119. https://doi.org/10.1021/acs.jmedchem.1c01205

    Article  Google Scholar 

  106. Arús-Pous, J., Patronov, A., Bjerrum, E. J., Tyrchan, C., Reymond, J. L., Chen, H., Engkvist, O. (2020). SMILES-based deep generative scaffold decorator for de-novo drug design. Journal of Cheminformatics, 12, 1–18. https://doi.org/10.1186/s13321-020-00441-8

    Article  Google Scholar 

  107. Li, Y., Zhang, L., Wang, Y., Zou, J., Yang, R., Luo, X., Wu, C., Yang, W., Tian, C., Xu, H. (2022). Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor. Nature Communications, 13, 6891.

    Article  Google Scholar 

  108. Ballarotto, M., Willems, S., Stiller, T., Nawa, F., Marschner, J. A., Grisoni, F., Merk, D. (2023). De novo design of Nurr1 agonists via fragment-augmented generative deep learning in low-data regime. Journal of Medicinal Chemistry, 66, 8170–8177. https://doi.org/10.1021/acs.jmedchem.3c00485

    Article  Google Scholar 

  109. Moret, M., Friedrich, L., Grisoni, F., Merk, D., Schneider, G. (2020). Generative molecular design in low data regimes. Nature Machine Intelligence, 2, 171–180. https://doi.org/10.1038/s42256-020-0160-y

    Article  Google Scholar 

  110. Moret, M., Helmstädter, M., Grisoni, F., Schneider, G., Merk, D. (2021). Beam search for automated design and scoring of novel ROR ligands with machine intelligence**. Angewandte Chemie—International Edition, 60, 19477–19482. https://doi.org/10.1002/anie.202104405

    Article  Google Scholar 

  111. Renz, P., Van Rompaey, D., Wegner, J. K., Hochreiter, S., Klambauer, G. (2019). On failure modes in molecule generation and optimization. Drug Discovery Today: Technologies, 32–33, 55–63. https://doi.org/10.1016/j.ddtec.2020.09.003

    Article  Google Scholar 

  112. Gao, W., Fu, T., Sun, J., & Coley, C. (2022). Sample efficiency matters: A benchmark for practical molecular optimization. Advances in Neural Information Processing Systems, 35, 21342–21357.

    Google Scholar 

  113. Schneider, P., Walters, W. P., Plowright, A. T., Sieroka, N., Listgarten, J., Goodnow, R. A., Fisher, J., Jansen, J. M., Duca, J. S., Rush, T. S., Zentgraf, M., Hill, J. E., Krutoholow, E., Kohler, M., Blaney, J., Funatsu, K., Luebkemann, C., Schneider, G. (2020). Rethinking drug design in the artificial intelligence era. Nature Reviews Drug Discovery, 19, 353–364. https://doi.org/10.1038/s41573-019-0050-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lavecchia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romanelli, V., Cerchia, C., Lavecchia, A. (2024). Unlocking the Potential of Generative Artificial Intelligence in Drug Discovery. In: Lyu, Z. (eds) Applications of Generative AI. Springer, Cham. https://doi.org/10.1007/978-3-031-46238-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46238-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46237-5

  • Online ISBN: 978-3-031-46238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics