Skip to main content

Myrmec: FPGA-Accelerated SmartNIC for Cost and Power Efficient IoT Sensor Networks

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14385))

Included in the following conference series:

  • 533 Accesses

Abstract

Battery-powered wireless sensor nodes are one of the fundamental components of IoT-style wide-scale data collection and processing, but their capabilities are often restricted by the limited wireless transmission bandwidth achievable under the stringent power envelope imposed by the battery or power harvesters. Extreme edge computing attempts to mitigate this issue by offloading some computation to the sensor nodes with the aim of reducing the wireless data transfer requirements, and it has shown great promise especially using application-specific hardware acceleration on reconfigurable fabrics such as FPGAs. However, simply attaching an FPGA accelerator as a peripheral to the embedded microcontroller requires microcontroller software to move data between the accelerator and network interface, which can quickly become the bottleneck for high-speed data collection and processing. In this work, we present Myrmec, a SmartNIC architecture which mitigates this burden by placing a low-power FPGA on the datapath between the microcontroller and NIC. We present a carefully optimized architecture for wireless data collection, and use three important application scenarios to show that it can improve effective bandwidth by up to almost 3\(\times \) compared to a standalone accelerator, which is on top of the order of magnitude reduction in wireless data transfer thanks to extreme edge computing. Thanks to reduction of wireless data transfer, Myrmec can reduce the overall power consumption of the node, despite the addition of acceleration which significantly improves data collection performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, N., De, D., Hussain, I.: Internet of things (IoT) for smart precision agriculture and farming in rural areas. IEEE Internet Things J. 5(6), 4890–4899 (2018)

    Article  Google Scholar 

  2. Alam, M.M., Malik, H., Khan, M.I., Pardy, T., Kuusik, A., Le Moullec, Y.: A survey on the roles of communication technologies in IoT-based personalized healthcare applications. IEEE Access 6, 36611–36631 (2018)

    Article  Google Scholar 

  3. Anand, S., RK, K.M.: FPGA implementation of artificial neural network for forest fire detection in wireless sensor network. In: 2017 2nd International Conference on Computing and Communications Technologies (ICCCT), pp. 265–270. IEEE (2017)

    Google Scholar 

  4. Baddeley, M., Nejabati, R., Oikonomou, G., Sooriyabandara, M., Simeonidou, D.: Evolving SDN for low-power IoT networks. In: 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), pp. 71–79. IEEE (2018)

    Google Scholar 

  5. Calvo, I., Gil-García, J.M., Recio, I., López, A., Quesada, J.: Building IoT applications with raspberry pi and low power IQRF communication modules. Electronics 5(3), 54 (2016)

    Article  Google Scholar 

  6. Casals, L., Mir, B., Vidal, R., Gomez, C.: Modeling the energy performance of lorawan. Sensors 17(10), 2364 (2017)

    Article  Google Scholar 

  7. Chan, P.K., Mahoney, M.V.: Modeling multiple time series for anomaly detection. In: Fifth IEEE International Conference on Data Mining (ICDM 2005), pp. 8. IEEE (2005)

    Google Scholar 

  8. Chen, J., Hong, S., He, W., Moon, J., Jun, S.W.: Eciton: Very low-power LSTM neural network accelerator for predictive maintenance at the edge. In: 2021 31st International Conference on Field-Programmable Logic and Applications (FPL), pp. 1–8. IEEE (2021)

    Google Scholar 

  9. Elnawawy, M., Farhan, A., Al Nabulsi, A., Al-Ali, A.R., Sagahyroon, A.: Role of FPGA in internet of things applications. In: 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 1–6. IEEE (2019)

    Google Scholar 

  10. Farooq, M.S., Riaz, S., Abid, A., Umer, T., Zikria, Y.B.: Role of IoT technology in agriculture: a systematic literature review. Electronics 9(2), 319 (2020)

    Article  Google Scholar 

  11. Firestone, D., et al.: Azure accelerated networking: Smartnics in the public cloud. In: 15th \(\{\)USENIX\(\}\) Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 18), pp. 51–66 (2018)

    Google Scholar 

  12. Gaura, E.I., Brusey, J., Allen, M., Wilkins, R., Goldsmith, D., Rednic, R.: Edge mining the internet of things. IEEE Sens. J. 13(10), 3816–3825 (2013)

    Article  Google Scholar 

  13. Gia, T.N., et al.: IoT-based fall detection system with energy efficient sensor nodes. In: 2016 IEEE Nordic Circuits and Systems Conference (NORCAS), pp. 1–6. IEEE (2016)

    Google Scholar 

  14. Goudos, S.K., Dallas, P.I., Chatziefthymiou, S., Kyriazakos, S.: A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications. Wireless Pers. Commun. 97, 1645–1675 (2017)

    Article  Google Scholar 

  15. Heble, S., Kumar, A., Prasad, K.V.D., Samirana, S., Rajalakshmi, P., Desai, U.B.: A low power IoT network for smart agriculture. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), pp. 609–614. IEEE (2018)

    Google Scholar 

  16. Jafarzadeh, M., Brooks, S., Yu, S., Prabhakaran, B., Tadesse, Y.: A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture. Robot. Auton. Syst. 139, 103536 (2021)

    Article  Google Scholar 

  17. Kang, J.J., Yang, W., Dermody, G., Ghasemian, M., Adibi, S., Haskell-Dowland, P.: No soldiers left behind: an IoT-based low-power military mobile health system design. IEEE Access 8, 201498–201515 (2020)

    Article  Google Scholar 

  18. Kang, S., Moon, J., Jun, S.W.: FPGA-accelerated time series mining on low-power IoT devices. In: 2020 IEEE 31st International Conference on Application-specific Systems, Architectures and Processors (ASAP), pp. 33–36. IEEE (2020)

    Google Scholar 

  19. Latha, P., Bhagyaveni, M.: Reconfigurable FPGA based architecture for surveillance systems in WSN. In: 2010 International Conference on Wireless Communication and Sensor Computing (ICWCSC), pp. 1–6. IEEE (2010)

    Google Scholar 

  20. Lauridsen, M., Krigslund, R., Rohr, M., Madueno, G.: An empirical NB-IoT power consumption model for battery lifetime estimation. In: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2018)

    Google Scholar 

  21. Li, J., Sun, Z., Yan, J., Yang, X., Jiang, Y., Quan, W.: DrawerPipe: a reconfigurable pipeline for network processing on FPGA-based SmartNIC. Electronics 9(1), 59 (2019)

    Article  Google Scholar 

  22. Mahdi, S.Q., Gharghan, S.K., Hasan, M.A.: FPGA-based neural network for accurate distance estimation of elderly falls using WSN in an indoor environment. Measurement 167, 108276 (2021)

    Article  Google Scholar 

  23. Marketsandmarksets: Internet of Things (IoT) Market Size, Global Growth Drivers amp; Opportunities. https://www.marketsandmarkets.com/Market-Reports/internet-of-things-market-573.html (2022). Accessed 30 Mar 2023

  24. Mekki, K., Bajic, E., Chaxel, F., Meyer, F.: Overview of cellular LPWAN technologies for iot deployment: Sigfox, lorawan, and NB-IoT. In: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (Percom Workshops), pp. 197–202. IEEE (2018)

    Google Scholar 

  25. Merino, P., Mujica, G., Señor, J., Portilla, J.: A modular IoT hardware platform for distributed and secured extreme edge computing. Electronics 9(3), 538 (2020)

    Article  Google Scholar 

  26. Modieginyane, K.M., Letswamotse, B.B., Malekian, R., Abu-Mahfouz, A.M.: Software defined wireless sensor networks application opportunities for efficient network management: a survey. Comput. Electr. Eng. 66, 274–287 (2018)

    Article  Google Scholar 

  27. Mohamed, R.E., Saleh, A.I., Abdelrazzak, M., Samra, A.S.: Survey on wireless sensor network applications and energy efficient routing protocols. Wireless Pers. Commun. 101, 1019–1055 (2018)

    Article  Google Scholar 

  28. Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K., Chung, E.S.: Accelerating deep convolutional neural networks using specialized hardware. Microsoft Res. Whitepaper 2(11), 1–4 (2015)

    Google Scholar 

  29. Pahlevi, R.R., Abdurohman, M., et al.: Fast UART and SPI protocol for scalable IoT platform. In: 2018 6th International Conference on Information and Communication Technology (ICoICT), pp. 239–244. IEEE (2018)

    Google Scholar 

  30. Rashid, B., Rehmani, M.H.: Applications of wireless sensor networks for urban areas: a survey. J. Netw. Comput. Appl. 60, 192–219 (2016)

    Article  Google Scholar 

  31. Ray, P.P., Dash, D., De, D.: Edge computing for internet of things: a survey, e-healthcare case study and future direction. J. Netw. Comput. Appl. 140, 1–22 (2019)

    Article  Google Scholar 

  32. Statista: Number of edge enabled internet of things (IoT) devices worldwide from 2020 to 2030, by market. https://www.statista.com/statistics/1259878/edge-enabled-iot-device-market-worldwide/ (2021). Accessed 30 Mar 2023

  33. Varatharajan, R., Manogaran, G., Priyan, M.K., Sundarasekar, R.: Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Clust. Comput. 21, 681–690 (2018)

    Article  Google Scholar 

  34. Xu, C., Ren, J., Zhang, D., Zhang, Y.: Distilling at the edge: a local differential privacy obfuscation framework for IoT data analytics. IEEE Commun. Mag. 56(8), 20–25 (2018)

    Article  Google Scholar 

  35. Yu, W., et al.: A survey on the edge computing for the internet of things. IEEE Access 6, 6900–6919 (2017)

    Article  Google Scholar 

  36. Zhiyong, C.H., Pan, L.Y., Zeng, Z., Meng, M.Q.H.: A novel FPGA-based wireless vision sensor node. In: 2009 IEEE International Conference on Automation and Logistics, pp. 841–846. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Woo Jun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Jun, SW. (2023). Myrmec: FPGA-Accelerated SmartNIC for Cost and Power Efficient IoT Sensor Networks. In: Silvano, C., Pilato, C., Reichenbach, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2023. Lecture Notes in Computer Science, vol 14385. Springer, Cham. https://doi.org/10.1007/978-3-031-46077-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46077-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46076-0

  • Online ISBN: 978-3-031-46077-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics