Abstract
This survey summarizes the software implementation knowledge of the Number Theoretic Transform (NTT)—a major subroutine of lattice-based cryptosystems. The NTT is a special type of Fast Fourier Transform defined over finite fields, and as such, NTT enables faster polynomial multiplication. There have been over a decade of implementations of NTT following different design methods (e.g., CPU vs. GPU), aiming different optimization goals (e.g., memory-footprint vs. high-throughput), and proposing different styles of optimizations at different abstraction levels (e.g., arithmetic vs. assembly). At the same time, there are several techniques for evaluating and mitigating implementation attacks on NTT. Yet there is no quick guideline to help new developers/practitioners or future researchers given the continuing industry and academic efforts on NTT implementations. Our goal in this paper is to provide an overview of a decade of work. To that end, we survey NTT software implementations and categorize them based on their target platforms, optimization goals, and implementation security enhancements. We furthermore provide an executive summary of the key ideas proposed in related works. We hope this paper to be a designer pit stop into the NTT world and help them navigate to their destination.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108 (1996)
Akleylek, S., Dağdelen, Ö., Yüce Tok, Z.: On the efficiency of polynomial multiplication for lattice-based cryptography on GPUs using CUDA. In: Pasalic, E., Knudsen, L.R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 155–168. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29172-7_10
Alagic, G., et al.: Status report on the second round of the NIST post-quantum cryptography standardization process. US Department of Commerce, NIST (2020)
Alkim, E., Alper Bilgin, Y., Cenk, M., Gérard, F.: Cortex-M4 optimizations for R, M LWE schemes. IACR Trans. Cryptographic Hardw. Embed. Syst. 2020(3), 336–357 (2020)
Alkim, E., Barreto, P.S.L.M., Bindel, N., Kramer, J., Longa, P., Ricardini, J.E.: The lattice-based digital signature scheme qTESLA. Cryptology ePrint Archive, Report 2019/085 (2019)
Alkım, E., Bilgin, Y.A., Cenk, M.: Compact and simple RLWE based key encapsulation mechanism. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 237–256. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_12
Alkim, E., et al.: Polynomial multiplication in NTRU prime: comparison of optimization strategies on cortex-m4. IACR Trans. Cryptographic Hardw. Embed. Syst. 2021(1), 217–238 (2020)
Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange—a new hope. In: 25th USENIX, pp. 327–343 (2016)
Alves, P.G.M., Ortiz, J.N., Aranha, D.F.: Performance of hierarchical transforms in homomorphic encryption: a case study on logistic regression inference. Cryptology ePrint Archive (2022)
Aysu, A., Patterson, C., Schaumont, P.: Low-cost and area-efficient FPGA implementations of lattice-based cryptography. In: 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 81–86 (2013). https://doi.org/10.1109/HST.2013.6581570
Azarderakhsh, R., Liu, Z., Seo, H., Kim, H.: Neon PQCryto: fast and parallel ring-LWE encryption on arm neon architecture. Cryptology ePrint Archive, Report 2015/1081 (2015). https://eprint.iacr.org/2015/1081
Badawi, A.A., Veeravalli, B., Aung, K.M.M., Hamadicharef, B.: Accelerating subset sum and lattice based public-key cryptosystems with multi-core CPUs and GPUs. J. Parallel Distrib. Comput. 119, 179–190 (2018)
Badawi, A.A., Veeravalli, B., Mi Aung, K.M.: Faster number theoretic transform on graphics processors for ring learning with errors based cryptography. In: 2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), pp. 26–31 (2018). https://doi.org/10.1109/SOLI.2018.8476725
Banerjee, U., Chandrakasan, A.P.: Efficient post-quantum TLS handshakes using identity-based key exchange from lattices. In: 2020 IEEE International Conference on Communications (ICC), ICC 2020, pp. 1–6 (2020)
Bentahar, K., Silverman, J., Saarinen, M.J.O., Smart, N.: Lash (2006)
Boemer, F., Kim, S., Seifu, G., de Souza, F.D., Gopal, V.: Intel HEXL: accelerating homomorphic encryption with Intel AVX512-IFMA52. Cryptology ePrint Archive, Report 2021/420 (2021). https://eprint.iacr.org/2021/420
Boorghany, A., Jalili, R.: Implementation and comparison of lattice-based identification protocols on smart cards and microcontrollers. Cryptology ePrint Archive, Report 2014/078 (2014). https://eprint.iacr.org/2014/078
Boorghany, A., Sarmadi, S.B., Jalili, R.: On constrained implementation of lattice-based cryptographic primitives and schemes on smart cards. ACM Trans. Embed. Comput. Syst. 14(3) (2015)
Bos, J., et al.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1006–1018 (2016)
Bos, J., et al.: Crystals-Kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE EuroS &P, pp. 353–367. IEEE (2018)
Botros, L., Kannwischer, M.J., Schwabe, P.: Memory-efficient high-speed implementation of Kyber on Cortex-M4. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 209–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0_11
Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_8
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. Cryptology ePrint Archive, Report 2011/344 (2011)
Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. Cryptology ePrint Archive, Report 2013/541 (2013). https://eprint.iacr.org/2013/541
Chang, B.C., Goi, B.M., Phan, R.C.W., Lee, W.K.: Accelerating multiple precision multiplication in GPU with Kepler architecture. In: 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 844–851 (2016)
Chang, B.C., Goi, B.M., Phan, R.C.W., Lee, W.K.: Multiplying very large integer in GPU with pascal architecture. In: 2018 IEEE Symposium on Computer Applications Industrial Electronics (ISCAIE), pp. 401–405 (2018)
Chu, E., George, A.: Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms. CRC Press (1999)
Chung, C.M.M., Hwang, V., Kannwischer, M.J., Seiler, G., Shih, C.J., Yang, B.Y.: NTT multiplication for NTT-unfriendly rings. Cryptology ePrint Archive, Report 2020/1397 (2020). https://eprint.iacr.org/2020/1397
de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software implementation of ring-LWE encryption. In: 2015 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 339–344 (2015)
Cousins, D.B., Rohloff, K., Sumorok, D.: Designing an FPGA-accelerated homomorphic encryption co-processor. IEEE Trans. Emerg. Top. Comput. 5(2), 193–206 (2017). https://doi.org/10.1109/TETC.2016.2619669
Dai, W., et al.: Implementation and evaluation of a lattice-based key-policy ABE scheme. IEEE Trans. Inf. Forensics Secur. 13(5), 1169–1184 (2018)
Dai, W., Sunar, B.: cuHE: a homomorphic encryption accelerator library. In: Pasalic, E., Knudsen, L.R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 169–186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29172-7_11
Du, C., Bai, G., Chen, H.: Towards efficient implementation of lattice-based public-key encryption on modern CPUs. In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 1230–1236 (2015). https://doi.org/10.1109/Trustcom.2015.510
Duong-Ngoc, P., Pham, T.X., Lee, H., Nguyen, T.T.: Flexible GPU-based implementation of number theoretic transform for homomorphic encryption. In: 2022 19th International SoC Design Conference (ISOCC), pp. 259–260 (2022)
Durrani, S., et al.: Accelerating Fourier and number theoretic transforms using tensor cores and warp shuffles. In: 2021 30th International Conference on Parallel Architectures and Compilation Techniques, pp. 345–355. IEEE (2021)
D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_16
Gao, Y., Xu, J., Wang, H.: CuNH: efficient GPU implementations of post-quantum KEM NewHope. IEEE Trans. Parallel Distrib. Syst. 33(3), 551–568 (2021)
Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford, CA, USA (2009). aAI3382729
Goey, J.Z., Lee, W.K., Goi, B.M., Yap, W.S.: Accelerating number theoretic transform in GPU platform for fully homomorphic encryption. J. Supercomput. 77, 1455–1474 (2021)
Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231
Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of hardware building blocks for modern lattice-based encryption schemes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512–529. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_30
Greconici, D.O.C., Kannwischer, M.J., Sprenkels, D.: Compact Dilithium implementations on Cortex-M3 and Cortex-M4. IACR Trans. Cryptographic Hardw. Embed. Syst. 2021(1), 1–24 (2020)
Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_31
Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 67–82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_5
Gupta, N., Jati, A., Chauhan, A.K., Chattopadhyay, A.: PQC acceleration using GPUs: FrodoKEM, NewHope, and Kyber. IEEE Trans. Parallel Distrib. Syst. 32(3), 575–586 (2021)
Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_9
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868
Howe, J., Prest, T., Apon, D.: SoK: How (not) to design and implement post-quantum cryptography. Cryptology ePrint Archive, Report 2021/462 (2021)
Imran, M., Pagliarini, S.: An experimental study of building blocks of lattice-based nist post-quantum cryptographic algorithms. Electronics 9(11) (2020)
Jung, W.: Over 100x faster bootstrapping in fully homomorphic encryption through memory-centric optimization with GPUs. IACR Trans. Cryptographic Hardw. Embed. Syst. 114–148 (2021)
Karabulut, E., Aysu, A.: RANTT: a RISC-V architecture extension for the number theoretic transform. In: 2020 30th International Conference on Field-Programmable Logic and Applications (FPL), pp. 26–32 (2020). https://doi.org/10.1109/FPL50879.2020.00016
Kim, S., Jung, W., Park, J., Ahn, J.H.: Accelerating number theoretic transformations for bootstrappable homomorphic encryption on GPUs. In: 2020 IEEE International Symposium on Workload Characterization, pp. 264–275. IEEE (2020)
Lee, W.-K., Akleylek, S., Yap, W.-S., Goi, B.-M.: Accelerating number theoretic transform in GPU platform for qTESLA scheme. In: Heng, S.-H., Lopez, J. (eds.) ISPEC 2019. LNCS, vol. 11879, pp. 41–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34339-2_3
Lee, W.K., Hwang, S.O.: High throughput implementation of post-quantum key encapsulation and decapsulation on GPU for internet of things applications. IEEE Trans. Serv. Comput. 15(6), 3275–3288 (2021)
Lee, W.-K., et al.: Parallel implementation of Nussbaumer algorithm and number theoretic transform on a GPU platform: application to qTESLA. J. Supercomput. 77, 3289–3314 (2021)
Liu, Z., Azarderakhsh, R., Kim, H., Seo, H.: Efficient implementation of ring-LWE encryption on high-end IoT platform. In: Hancke, G.P., Markantonakis, K. (eds.) RFIDSec 2016. LNCS, vol. 10155, pp. 76–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62024-4_6
Liu, Z., Seo, H., Sinha Roy, S., Großschädl, J., Kim, H., Verbauwhede, I.: Efficient ring-LWE encryption on 8-bit AVR processors. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 663–682. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_33
Livesay, N., et al.: Accelerating finite field arithmetic for homomorphic encryption on GPUs. In: IEEE Micro, pp. 1–9 (2023)
Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_8
Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_4
Lyubashevsky, V., Seiler, G.: NTTRU: truly fast NTRU using NTT. IACR Trans. Cryptographic Hardw. Embed. Syst. 2019(3), 180–201 (2019)
Mert, A.C., Karabulut, E., Ozturk, E., Savas, E., Aysu, A.: An extensive study of flexible design methods for the number theoretic transform. IEEE Trans. Comput. 71, 2829–2843 (2020). https://doi.org/10.1109/TC.2020.3017930
Mohsen, A.W., Sobh, M.A., Bahaa-Eldin, A.M.: Performance analysis of number theoretic transform for lattice-based cryptography. In: 2018 13th International Conference on Computer Engineering and Systems (ICCES), pp. 442–447 (2018)
Navas, J.A., Dutertre, B., Mason, I.A.: Verification of an optimized NTT algorithm. In: Christakis, M., Polikarpova, N., Duggirala, P.S., Schrammel, P. (eds.) NSV/VSTTE -2020. LNCS, vol. 12549, pp. 144–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63618-0_9
Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I., Cammarota, R.: Post-quantum lattice-based cryptography implementations: a survey. ACM Comput. Surv. 51(6) (2019)
Ni, N., Zhu, Y.: Enabling zero knowledge proof by accelerating zk-SNARK kernels on GPU. J. Parallel Distrib. Comput. 173, 20–31 (2023)
Oder, T., Pöppelmann, T., Güneysu, T.: Beyond ECDSA and RSA: lattice-based digital signatures on constrained devices. In: 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6 (2014)
O’Sullivan, E., Regazzoni, F.: Special session paper: efficient arithmetic for lattice-based cryptography. In: 2017 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 1–3 (2017)
Özerk, Ö., Elgezen, C., Mert, A.C., Öztürk, E., Savaş, E.: Efficient number theoretic transform implementation on GPU for homomorphic encryption. J. Supercomput. 78(2), 2840–2872 (2022)
Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report 2015/939 (2015). https://eprint.iacr.org/2015/939
Pessl, P., Primas, R.: More practical single-trace attacks on the number theoretic transform. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 130–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_7
Pöppelmann, T., Güneysu, T.: Towards efficient arithmetic for lattice-based cryptography on reconfigurable hardware. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 139–158. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33481-8_8
Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based cryptography on 8-bit ATxmega microcontrollers. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 346–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_19
Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked lattice-based encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 513–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_25
Ravi, P., Poussier, R., Bhasin, S., Chattopadhyay, A.: On configurable SCA countermeasures against single trace attacks for the NTT - a performance evaluation study over Kyber and Dilithium on the arm Cortex-M4. Cryptology ePrint Archive, Report 2020/1038 (2020). https://eprint.iacr.org/2020/1038
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 1–40 (2009)
Reparaz, O., Roy, S.S., Vercauteren, F., Verbauwhede, I.: A masked ring-LWE implementation. Cryptology ePrint Archive, Report 2015/724 (2015)
Sahu, G., Rohloff, K.: Accelerating lattice based proxy re-encryption schemes on GPUs. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol. 12579, pp. 613–632. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65411-5_30
Schaumont, P., Aysu, A.: Three design dimensions of secure embedded systems. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.) SPACE 2013. LNCS, vol. 8204, pp. 1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41224-0_1
Scott, M.: A note on the implementation of the number theoretic transform. Cryptology ePrint Archive, Report 2017/727 (2017)
Seiler, G.: Faster AVX2 optimized NTT multiplication for ring-LWE lattice cryptography. Cryptology ePrint Archive, Report 2018/039 (2018)
Shen, S., Yang, H., Dai, W., Liu, Z., Zhao, Y.: High-throughput GPU implementation of Dilithium post-quantum digital signature (2022)
Shivdikar, K., et al.: Accelerating polynomial multiplication for homomorphic encryption on GPUs (2022)
Tan, T.N., Lee, H.: High-secure fingerprint authentication system using ring-LWE cryptography. IEEE Access 7, 23379–23387 (2019)
Türkoğlu, E.R., Özcan, A., Ayduman, C., Mert, A.C., Öztürk, E., Savaş, E.: An accelerated GPU library for homomorphic encryption operations of BFV scheme. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1155–1159 (2022). https://doi.org/10.1109/ISCAS48785.2022.9937503
Ulu, M.E., Cenk, M.: A parallel GPU implementation of SWIFFTX. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds.) MACIS 2019. LNCS, vol. 11989, pp. 202–217. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43120-4_16
Valencia, F., Khalid, A., O’Sullivan, E., Regazzoni, F.: The design space of the number theoretic transform: a survey. In: 2017 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp. 273–277 (2017). https://doi.org/10.1109/SAMOS.2017.8344640
Wang, W., Hu, Y., Chen, L., Huang, X., Sunar, B.: Exploring the feasibility of fully homomorphic encryption. IEEE Trans. Comput. 64(3), 698–706 (2015). https://doi.org/10.1109/TC.2013.154
Wang, Z., Li, P., Li, Z., Cao, J., Wang, X., Meng, D.: HE-Booster: an efficient polynomial arithmetic acceleration on GPUs for fully homomorphic encryption. IEEE Trans. Parallel Distrib. Syst. 34(4), 1067–1081 (2023)
Xu, J., Wang, Y., Liu, J., Wang, X.: A general-purpose number theoretic transform algorithm for compact RLWE cryptoprocessors. In: 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID), pp. 1–5 (2020). https://doi.org/10.1109/ASID50160.2020.9271722
Xu, Z., Pemberton, O., Roy, S.S., Oswald, D.: Magnifying side-channel leakage of lattice-based cryptosystems with chosen ciphertexts: the case study of Kyber. Cryptology ePrint Archive, Report 2020/912 (2020)
Zhai, Y., et al.: Accelerating encrypted computing on Intel GPUs. In: 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 705–716. IEEE (2022)
Zhang, Y., et al.: PipeZK: accelerating zero-knowledge proof with a pipelined architecture. In: 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pp. 416–428. IEEE (2021)
Zhao, X., Wang, B., Zhao, Z., Qu, Q., Wang, L.: Highly efficient parallel design of Dilithium on GPUs (2022)
Zhou, S., et al.: Preprocess-then-NTT technique and its applications to Kyber and NewHope. In: Guo, F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS, vol. 11449, pp. 117–137. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14234-6_7
Zhu, Y., Liu, Z., Pan, Y.: When NTT meets Karatsuba: preprocess-then-NTT technique revisited. Cryptology ePrint Archive, Report 2019/1079 (2019)
Özcan, A., Ayduman, C., Türkoğlu, E.R., Savaş, E.: Homomorphic encryption on GPU. IEEE Access 1 (2023). https://doi.org/10.1109/ACCESS.2023.3265583
Acknowledgments
This paper is supported in part by NSF award no CCF 2146881. Erkay Savaş is supported by the European Union’s Horizon Europe research and innovation programme under grant agreement No: 101079319.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mert, A.C., Yaman, F., Karabulut, E., Öztürk, E., Savaş, E., Aysu, A. (2023). A Survey of Software Implementations for the Number Theoretic Transform. In: Silvano, C., Pilato, C., Reichenbach, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2023. Lecture Notes in Computer Science, vol 14385. Springer, Cham. https://doi.org/10.1007/978-3-031-46077-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-46077-7_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46076-0
Online ISBN: 978-3-031-46077-7
eBook Packages: Computer ScienceComputer Science (R0)