Skip to main content

Fault Detection Mechanisms for COTS FPGA Systems Used in Low Earth Orbit

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2023)

Abstract

Field-programmable gate array (FPGAs) in space applications come with the drawback of radiation effects, which inevitably will occur in devices of small process size. This also applies to the electronics of the Bose Einstein Condensate and Cold Atom Laboratory (BECCAL) apparatus, which will operate on the International Space Station (ISS) for several years. A total of more than 100 FPGAs distributed throughout the setup will be used for high-precision control of specialized sensors and actuators at nanosecond scale. On ISS, radiation effects must be taken into account, the functionality of the electronics must be monitored, and errors must be handled properly. Due to the large number of devices in BECCAL, commercial off-the-shelf (COTS) FPGAs are used, which are not radiation hardened. This paper describes the methods and measures used to mitigate the effects of radiation in an application specific COTS-FPGA-based communication network. Based on the firmware for a central communication network switch in BECCAL the steps are described to integrate redundancy into the design while optimizing the firmware to stay within the FPGA’s resource constraints. A redundant integrity checker module is developed that can notify preceding network devices of data and configuration bit errors. The firmware is validated and evaluated by injecting faults into data and configuration registers in simulation and real hardware. In the end, the FPGA resource usage of the firmware is reduced by more than half, enabling the use of dual modular redundancy (DMR) for the switching fabric. Together with the triple modular redundancy (TMR) protected integrity checker, this combination completely prevents silent data corruptions in the design as shown in simulation and by injecting faults into hardware using the Intel Fault Injection FPGA IP Core while staying within the resource limitation of a COTS FPGA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White paper: Single event effects - a comparison of configuration upsets and data upsets. Technical report, WP0203, Microsemi Corporation (2015)

    Google Scholar 

  2. Intel MAX 10 FPGA configuration user guide (2018). https://www.intel.com/content/www/us/en/docs/programmable/683865/current/seu-mitigation-and-configuration-error.html

  3. Fault injection intel FPGA IP core user guide (2019). https://www.intel.com/content/www/us/en/docs/programmable/683254/18-1/core-user-guide.html

  4. Alderighi, M., Casini, F., D’Angelo, S., Salvi, D., Sechi, G.R.: A fault-tolerance strategy for an FPGA-based multi-stage interconnection network in a multi-sensor system for space application. In: Proceedings 2001 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 191–199. IEEE (2001)

    Google Scholar 

  5. Allen, G.R., Irom, F., Scheick, L., Vartanian, S., O’Connor, M.: Heavy ion induced single-event latchup screening of integrated circuits using commercial off-the-shelf evaluation boards. In: 2016 IEEE Radiation Effects Data Workshop (REDW), pp. 1–7. IEEE (2016)

    Google Scholar 

  6. Aranda, L.A., Sánchez, A., Garcia-Herrero, F., Barrios, Y., Sarmiento, R., Maestro, J.A.: Reliability analysis of the SHyLoC CCSDS123 IP core for lossless hyperspectral image compression using cots FPGAs. Electronics 9(10), 1681 (2020)

    Article  Google Scholar 

  7. Becker, D., et al.: Space-borne Bose-Einstein condensation for precision interferometry. Nature 562(7727), 391–395 (2018)

    Article  Google Scholar 

  8. Berger, T., et al.: The solar particle event on 10 September 2017 as observed onboard the International Space Station (ISS). Space Weather 16(9), 1173–1189 (2018)

    Article  Google Scholar 

  9. Calin, T., Nicolaidis, M., Velazco, R.: Upset hardened memory design for submicron CMOS technology. IEEE Trans. Nucl. Sci. 43(6), 2874–2878 (1996)

    Article  Google Scholar 

  10. Frye, K., et al.: The Bose-Einstein condensate and cold atom laboratory. EPJ Quantum Technol. 8(1), 1–38 (2021)

    Article  Google Scholar 

  11. Glein, R., et al.: Reliability of space-grade vs. COTS SRAM-based FPGA in N-modular redundancy. In: 2015 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 1–8. IEEE (2015)

    Google Scholar 

  12. Julien, C.R., LaMeres, B.J., Weber, R.J.: An FPGA-based radiation tolerant smallsat computer system. In: 2017 IEEE Aerospace Conference, pp. 1–13. IEEE (2017)

    Google Scholar 

  13. Kastensmidt, F.L., Carro, L., da Luz Reis, R.A.: Fault-tolerance techniques for SRAM-based FPGAs, vol. 1. Springer, Cham (2006). https://doi.org/10.1007/978-0-387-31069-5

    Book  Google Scholar 

  14. Koontz, S., et al.: The International Space Station space radiation environment: avionics systems performance in low-earth orbit single event effects (SEE) environments. In: 48th International Conference on Environmental Systems (2018)

    Google Scholar 

  15. Morgan, K.S., McMurtrey, D.L., Pratt, B.H., Wirthlin, M.J.: A comparison of TMR with alternative fault-tolerant design techniques for FPGAs. IEEE Trans. Nucl. Sci. 54(6), 2065–2072 (2007)

    Article  Google Scholar 

  16. Oberschulte, T., Wendrich, T., Blume, H.: FPGA-based low-cost synchronized fiber network for experimental setups in space. J. Instrum. 16(11), P11016 (2021)

    Article  Google Scholar 

  17. Pratt, B., Caffrey, M., Carroll, J.F., Graham, P., Morgan, K., Wirthlin, M.: Fine-grain SEU mitigation for FPGAs using partial TMR. IEEE Trans. Nucl. Sci. 55(4), 2274–2280 (2008)

    Article  Google Scholar 

  18. Quinn, H.M., Manuzzato, A., Fairbanks, T., Dallmann, N., Desgeorges, R.: High-performance computing for airborne applications. Technical report, Los Alamos National Lab. (LANL), Los Alamos, NM (USA) (2010)

    Google Scholar 

  19. Schwartz, H., Nichols, D., Johnston, A.: Single-event upset in flash memories. IEEE Trans. Nucl. Sci. 44(6), 2315–2324 (1997)

    Article  Google Scholar 

  20. Widmer, A.X., Franaszek, P.A.: A DC-balanced, partitioned-block, 8B/10B transmission code. IBM J. Res. Dev. 27(5), 440–451 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Oberschulte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oberschulte, T., Marten, J., Blume, H. (2023). Fault Detection Mechanisms for COTS FPGA Systems Used in Low Earth Orbit. In: Silvano, C., Pilato, C., Reichenbach, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2023. Lecture Notes in Computer Science, vol 14385. Springer, Cham. https://doi.org/10.1007/978-3-031-46077-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46077-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46076-0

  • Online ISBN: 978-3-031-46077-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics