Skip to main content

Micro-architecture and Control Electronics Simulation of Modular Color Center-Based Quantum Computers

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14385))

Included in the following conference series:

  • 538 Accesses

Abstract

In the world of quantum computing, developments of electronics needed to control (a) qubit(s) rapidly follow one another. Consequently, (micro-)architectures need to be defined to ultimately build control logic. In this paper, we present the (micro-)architecture of a quantum computer based on nitrogen-vacancy (NV) centers in diamonds and a comprehensive simulator capable of mimicking all related (electronic) components as well as quantum operations. We demonstrate that, using our simulator (utilizing noiseless models), we can correctly emulate past (physical) experiments carried out prior to the definition of our architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our sequences can be found on https://github.com/fderonde98/QISA_sequences.

References

  1. de Bone, S., Ouyang, R., Goodenough, K., Elkouss, D.: Protocols for creating and distilling multipartite GHz states with bell pairs. IEEE Trans. Quantum Eng. 1, 1–10 (2020). https://doi.org/10.1109/TQE.2020.3044179

    Article  Google Scholar 

  2. Bradley, C.E., et al.: A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9(3) (2019). https://doi.org/10.1103/PhysRevX.9.031045

  3. Bradley, C., et al.: Robust quantum-network memory based on spin qubits in isotopically engineered diamond. NPJ Quantum Inf. 8(1), 1–9 (2022)

    Article  MathSciNet  Google Scholar 

  4. Coopmans, T., et al.: NetSquid, a network simulator for quantum information using discrete events. Commun. Phys. 4(1), 1–15 (2021)

    Article  Google Scholar 

  5. Developers, C.: Cirq. Zenodo (2022). https://doi.org/10.5281/zenodo.6599601. See full list of authors on Github. https://github.com/quantumlib/Cirq/graphs/contributors

  6. Dijk, J.V., Vladimirescu, A., Babaie, M., Charbon, E., Sebastiano, F.: SPINE (SPIN emulator)-a quantum-electronics interface simulator. In: Proceedings - 2019 8th International Workshop on Advances in Sensors and Interfaces, IWASI 2019, pp. 23–28. Institute of Electrical and Electronics Engineers Inc. (2019). https://doi.org/10.1109/IWASI.2019.8791334

  7. Fu, X., et al.: eQASM: an executable quantum instruction set architecture. In: 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 224–237 (2019). https://doi.org/10.1109/HPCA.2019.00040

  8. Fu, X., et al.: An experimental microarchitecture for a superconducting quantum processor. In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-50 2017, pp. 813–825. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3123939.3123952

  9. Guerreschi, G.G., Hogaboam, J., Baruffa, F., Sawaya, N.P.D.: Intel quantum simulator: a cloud-ready high-performance simulator of quantum circuits. Quantum Sci. Technol. 5(3), 034007 (2020). https://doi.org/10.1088/2058-9565/ab8505

  10. Hopper, D.A., Lauigan, J.D., Huang, T.Y., Bassett, L.C.: Real-time charge initialization of diamond nitrogen-vacancy centers for enhanced spin readout. Phys. Rev. Appl. 13, 024016 (2020). https://doi.org/10.1103/PhysRevApplied.13.024016,https://link.aps.org/doi/10.1103/PhysRevApplied.13.024016

  11. Khammassi, N., Ashraf, I., Fu, X., Almudever, C.G., Bertels, K.: QX: a high-performance quantum computer simulation platform. In: Proceedings of the 2017 Design, Automation and Test in Europe, DATE 2017, pp. 464–469. Institute of Electrical and Electronics Engineers Inc. (2017). https://doi.org/10.23919/DATE.2017.7927034

  12. Khammassi, N., Guerreschi, G.G., Ashraf, I., Hogaboam, J.W., Almudever, C.G., Bertels, K.: cQASM v1.0: towards a common quantum assembly language (2018). http://arxiv.org/abs/1805.09607

  13. Nickerson, N.H., Fitzsimons, J.F., Benjamin, S.C.: Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links. Phys. Rev. X 4, 041041 (2014). https://doi.org/10.1103/PhysRevX.4.041041, https://link.aps.org/doi/10.1103/PhysRevX.4.041041

  14. Nickerson, N.H., Li, Y., Benjamin, S.C.: Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4 (2013). https://doi.org/10.1038/ncomms2773

  15. Robledo, L., Childress, L., Bernien, H., Hensen, B., Alkemade, P.F., Hanson, R.: High-fidelity projective read-out of a solid-state spin quantum register. Nature 477(7366), 574–578 (2011). https://doi.org/10.1038/nature10401

    Article  Google Scholar 

  16. Shang, Y.X., et al.: High-pressure NMR enabled by diamond nitrogen-vacancy centers. arXiv preprint arXiv:2203.10511 (2022)

  17. da Silva, F.F.: Snippet for various nitrogen-vacancy (NV) components used in a quantum network. https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-nv

  18. Vandersypen, L.M.K., Chuang, I.L.: NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005). https://doi.org/10.1103/RevModPhys.76.1037, https://link.aps.org/doi/10.1103/RevModPhys.76.1037

  19. Yadav, A., Khammassi, N., Bertels, K.: CC-spin: a microarchitecture design for control of spin-qubit quantum accelerator (2020)

    Google Scholar 

  20. Zeuch, D., Hassler, F., Slim, J.J., DiVincenzo, D.P.: Exact rotating wave approximation. Ann. Phys. 423 (2020). https://doi.org/10.1016/j.aop.2020.168327

Download references

Acknowledgements

We gratefully acknowledge support from the joint research program “Modular quantum computers” by Fujitsu Limited and Delft University of Technology, co-funded by the Netherlands Enterprise Agency under project number PPS2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folkert de Ronde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Ronde, F., Dreef, M., Wong, S., Elkouss, D. (2023). Micro-architecture and Control Electronics Simulation of Modular Color Center-Based Quantum Computers. In: Silvano, C., Pilato, C., Reichenbach, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2023. Lecture Notes in Computer Science, vol 14385. Springer, Cham. https://doi.org/10.1007/978-3-031-46077-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46077-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46076-0

  • Online ISBN: 978-3-031-46077-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics