Skip to main content

Pediatric Trauma Computed Tomography: A Comprehensive Guide

  • Chapter
  • First Online:
Trauma Computed Tomography
  • 129 Accesses

Abstract

Trauma is the leading cause of morbidity and mortality in children over 1 year of age, with a vast majority of injuries being blunt traumatic injuries. CT is an important tool in evaluation and management of pediatric trauma. However, because children are at increased risk of harmful radiation effects, CT must be used more cautiously, and protocols must be modified to decrease radiation dose. There are important differences in patterns of pediatric injuries than adults owing to different body proportions and the immature skeleton. The relatively larger head size, hypermobility of the cervical spine, and ligamentous laxity makes young children more prone to upper cervical spine injuries, dislocation injuries, and spinal cord injuries without bony injury. Children are also more susceptible to blunt chest and abdominal injuries than adults because of the larger relative size of the organs compared to the torso size and paucity of protective intraabdominal fat. Trauma grading of solid organ injuries in children follows the AAST grading scale. The growing skeleton creates unique points of strengths and weaknesses. Fractures tend to occur at the weakest point in the growing bones at the physes and apophyses. The bones are also more pliable and can buckle or bend before fracturing, resulting in buckle, bowing, or incomplete fractures. Differentiating accidental trauma from non-accidental trauma can be challenging but is a critically important distinction with important legal implications. Imaging plays an important role in identification of injuries that may not be outwardly apparent. Certain patterns of head and spine injuries in infants and young children are more highly associated with non-accidental trauma. Awareness of mimics of abusive head trauma is critical to avoid erroneously diagnosing non-accidental trauma. No specific abdominal injury is indicative of non-accidental trauma though pancreatic and hollow viscus injury are more commonly associated with non-accidental trauma. Fractures also occur in nearly half of abused children. While skeletal survey remains the gold standard in the evaluation for fractures, though low dose CT has recently been used to better assess for rib fractures. This chapter reviews CT findings of both accidental and non-accidental pediatric traumatic injuries, reviews common mimics that may present diagnostic pitfalls, and reviews specific pediatric CT protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Centers for Disease Control and Prevention, National Center for Health Statistics. National vital statistics system, mortality 2018-2021 on CDC WONDER online database, released in 2021. Accessed at http://wonder.cdc.gov/ucd-icd10-expanded.html.

  2. Goodman TR, Mustafa A, Rowe E. Pediatric CT radiation exposure: where we were, and where we are now. Pediatr Radiol. 2019;49(4):469–78.

    Article  PubMed  Google Scholar 

  3. Goske MJ, Applegate KE, Boylan J, Butler PF, Callahan MJ, Coley BD, Farley S, Frush DP, Hernanz-Schulman M, Jaramillo D, Johnson ND, Kaste SC, Morrison G, Strauss KJ, Tuggle N. The image gently campaign: working together to change practice. AJR Am J Roentgenol. 2008;190(2):273–4.

    Article  PubMed  Google Scholar 

  4. Pediatric Radiology & Imaging. Radiation safety – image gently. www.imagegently.org.

  5. Ohana O, Soffer S, Zimlichman E, Klang E. Overuse of CT and MRI in paediatric emergency departments. Br J Radiol. 2018;91(1085):20170434.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gaffley M, Neff LP, Sieren LM, Zeller KA, Pranikoff T, Rush T, Petty JK. Evaluation of an evidence-based guideline to reduce CT use in the assessment of blunt pediatric abdominal trauma. J Pediatr Surg. 2021;56(2):297–301.

    Article  PubMed  Google Scholar 

  7. Arbra CA, Vogel AM, Plumblee L, Zhang J, Mauldin PD, Dassinger MS, Russell RT, Blakely ML, Streck CJ. External validation of a five-variable clinical prediction rule for identifying children at very low risk for intra-abdominal injury after blunt abdominal trauma. J Trauma Acute Care Surg. 2018;85(1):71–7.

    Article  PubMed  Google Scholar 

  8. Streck CJ, Vogel AM, Zhang J, Huang EY, Santore MT, Tsao K, Falcone RA, Dassinger MS, Russell RT, Blakely ML, Pediatric Surgery Research Collaborative. Identifying children at very low risk for blunt intra-abdominal injury in whom CT of the abdomen can be avoided safely. J Am Coll Surg. 2017;224(4):449–58.

    Article  PubMed  Google Scholar 

  9. Sathya C, Alali AS, Wales PW, Langer JC, Kenney BD, Burd RS, Nance ML, Nathens AB. Computed tomography rates and estimated radiation-associated cancer risk among injured children treated at different trauma center types. Injury. 2019;50(1):142–8.

    Article  PubMed  Google Scholar 

  10. Kim YH, Kim MJ, Shin HJ, Yoon H, Lee MJ. Simplified split-bolus intravenous contrast injection technique for pediatric abdominal CT. Clin Imaging. 2017;46:28–32.

    Article  PubMed  Google Scholar 

  11. Thomas KE, Mann EH, Padfield N, et al. Dual bolus intravenous contrast injection technique for multiregion paediatric body CT. Eur Radiol. 2015;25:1014–22.

    Article  PubMed  Google Scholar 

  12. Siegel MJ, Ramirez-Giraldo JC. Dual-energy CT in children: imaging algorithms and clinical applications. Radiology. 2019;291(2):286–97. https://doi.org/10.1148/radiol.2019182289.

    Article  PubMed  Google Scholar 

  13. Vogl TJ, Schulz B, Bauer RW, Stöver T, Sader R, Tawfik AM. Dual-energy CT applications in head and neck imaging. AJR Am J Roentgenol. 2012;199(5):34–9. https://doi.org/10.2214/AJR.12.9113.

    Article  Google Scholar 

  14. Naruto N, Tannai H, Nishikawa K, et al. Dual-energy bone removal computed tomography (BRCT): preliminary report of efficacy of acute intracranial hemorrhage detection. Emerg Radiol. 2018;25(1):29–33. https://doi.org/10.1007/s10140-017-1558-7.

    Article  PubMed  Google Scholar 

  15. Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics. 2018;38(2):450–61. https://doi.org/10.1148/rg.2018170102.

    Article  PubMed  Google Scholar 

  16. Ryan ME, Pruthi S, et al. ACR appropriateness criteria® head trauma-child. J Am Coll Radiol. 2020;17(5S):S125–37. https://doi.org/10.1016/j.jacr.2020.01.026.

    Article  PubMed  Google Scholar 

  17. Kuppermann N, Holmes JF, Dayan PS, et al. Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet. 2009;374(9696):1160–70. https://doi.org/10.1016/S0140-6736(09)61558-0.

    Article  PubMed  Google Scholar 

  18. Hodges H, Epstein KN, Retrouvey M, et al. Pitfalls in the interpretation of pediatric head CTs: what the emergency radiologist needs to know. Emerg Radiol. 2022;29(4):729–42. https://doi.org/10.1007/s10140-022-02042-4.

    Article  PubMed  Google Scholar 

  19. Looney CB, Smith JK, Merck LH, et al. Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship to obstetric and neonatal risk factors. Radiology. 2007;242(2):535–41. https://doi.org/10.1148/radiol.2422060133.

    Article  PubMed  Google Scholar 

  20. Nikam RM, Kandula VV, Yue X, et al. Birth-related subdural hemorrhage: prevalence and imaging morphology. Pediatr Radiol. 2021;51(6):939–46. https://doi.org/10.1007/s00247-021-05060-5.

    Article  PubMed  Google Scholar 

  21. Choudhary AK, Bradford RK, Dias MS, Moore GJ, Boal DKB. Spinal subdural hemorrhage in abusive head trauma: a retrospective study. Radiology. 2012;262(1):216–23. https://doi.org/10.1148/radiol.11102390.

    Article  PubMed  Google Scholar 

  22. Squier W. The “Shaken Baby” syndrome: pathology and mechanisms. Acta Neuropathol. 2011;122(5):519–42. https://doi.org/10.1007/s00401-011-0875-2.

    Article  PubMed  Google Scholar 

  23. Mankad K, Chhabda S, Lim W, et al. The neuroimaging mimics of abusive head trauma. Eur J Paediatr Neurol. 2019;23(1):19–30. https://doi.org/10.1016/j.ejpn.2018.11.006.

    Article  PubMed  Google Scholar 

  24. Chaturvedi A, Chaturvedi A, Stanescu AL, Blickman JG, Meyers SP. Mechanical birth-related trauma to the neonate: an imaging perspective. Insights Imaging. 2018;9(1):103–18. https://doi.org/10.1007/s13244-017-0586-x.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Acuña J, Adhikari S. Point-of-care ultrasound to distinguish subgaleal and cephalohematoma: case report. Clin Pract Cases Emerg Med. 2021;5(2):198–201.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schweitzer AD, Niogi SN, Whitlow CT, Tsiouris AJ. Traumatic brain injury: imaging patterns and complications. Radiographics. 2019;39(6):1571–95. https://doi.org/10.1148/rg.2019190076.

    Article  PubMed  Google Scholar 

  27. Janas AM, Qin F, Hamilton S, et al. Diffuse axonal injury grade on early MRI is associated with worse outcome in children with moderate-severe traumatic brain injury. Neurocrit Care. 2022;36(2):492–503. https://doi.org/10.1007/s12028-021-01336-8.

    Article  PubMed  Google Scholar 

  28. Dreizin D, Kim W, Kim JS, Boscak AR, Bodanapally UK, Munera F, Stein DM. Will the real SCIWORA please stand up? Exploring clinicoradiologic mismatch in closed spinal cord injuries. AJR Am J Roentgenol. 2015;205(4):853–60.

    Article  PubMed  Google Scholar 

  29. McAllister AS, Nagaraj U, Radhakrishnan R. Emergent imaging of pediatric cervical spine trauma. Radiographics. 2019;39(4):1126–42. https://doi.org/10.1148/rg.2019180100.

    Article  PubMed  Google Scholar 

  30. Copley PC, Tilliridou V, Kirby A, Jones J, Kandasamy J. Management of cervical spine trauma in children. Eur J Trauma Emerg Surg. 2019;45(5):777–89. https://doi.org/10.1007/s00068-018-0992-x. Epub 2018 Aug 24.

    Article  PubMed  Google Scholar 

  31. Pang D, Nemzek WR, Zovickian J. Atlanto-occipital dislocation–part 2: The clinical use of (occipital) condyle-C1 interval, comparison with other diagnostic methods, and the manifestation, management, and outcome of atlanto-occipital dislocation in children. Neurosurgery. 2007;61(5):995–1015; discussion 1015. https://doi.org/10.1227/01.neu.0000303196.87672.78.

    Article  PubMed  Google Scholar 

  32. Pang D. Spinal cord injury without radiographic abnormality in children, 2 decades later. Neurosurgery. 2004;55(6):1325–42; discussion 1342. https://doi.org/10.1227/01.neu.0000143030.85589.e6.

    Article  PubMed  Google Scholar 

  33. Smith P, Linscott LL, Vadivelu S, Zhang B, Leach JL. Normal development and measurements of the occipital condyle-C1 interval in children and young adults. AJNR Am J Neuroradiol. 2016;37(5):952–7. https://doi.org/10.3174/ajnr.A4543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Konovalov N, Peev N, Zileli M, Sharif S, Kaprovoy S, Timonin S. Pediatric cervical spine injuries and SCIWORA: WFNS spine committee recommendations. Neurospine. 2020;17(4):797–808. https://doi.org/10.14245/ns.2040404.202.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rao RD, Tang S, Lim C, Yoganandan N. Developmental morphology and ossification patterns of the C1 vertebra. J Bone Joint Surg Am. 2013;95(17):e1241–7. https://doi.org/10.2106/JBJS.L.01035.

    Article  PubMed  Google Scholar 

  36. Kobets AJ, Nakhla J, Biswas A, Kinon MD, Yassari R, Abbott IR. Isolated synchondrosis fracture of the atlas presenting as rotatory fixation of the neck: case report and review of literature. Surg Neurol Int. 2016;7(Suppl 42):S1092–5. https://doi.org/10.4103/2152-7806.196768.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Alvarez Caro F, Pumarada Prieto M, Alvarez BF. Congenital defect of the atlas and axis. A cause of misdiagnose when evaluating an acute neck trauma. Am J Emerg Med. 2008;26(7):840. https://doi.org/10.1016/j.ajem.2008.01.038.

    Article  Google Scholar 

  38. Sharifi G, Lotfinia M, Rahmanzade R, et al. Congenital absence of the posterior element of C1, C2, and C3 along with bilateral absence of C4 pedicles: case report and review of the literature. World Neurosurg. 2018;111:395–401. https://doi.org/10.1016/j.wneu.2017.12.070.

    Article  PubMed  Google Scholar 

  39. Karwacki GM, Schneider JF. Normal ossification patterns of atlas and axis: a CT study. AJNR Am J Neuroradiol. 2012;33(10):1882–7. https://doi.org/10.3174/ajnr.A3105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mistry D, Munjal H, Ellika S, Chaturvedi A. Pediatric spine trauma: a comprehensive review. Clin Imaging. 2022;87:61–76. https://doi.org/10.1016/j.clinimag.2022.04.012.

    Article  PubMed  Google Scholar 

  41. Rusin JA, Ruess L, Daulton RS. New C2 synchondrosal fracture classification system. Pediatr Radiol. 2015;45(6):872–81. https://doi.org/10.1007/s00247-014-3224-5.

    Article  PubMed  Google Scholar 

  42. Hedequist DJ, Mo AZ. Os odontoideum in children. J Am Acad Orthop Surg. 2020;28(3):e100–7. https://doi.org/10.5435/JAAOS-D-18-00637.

    Article  PubMed  Google Scholar 

  43. Singhal A, Mitra A, Cochrane D, Steinbok P. Ring apophysis fracture in pediatric lumbar disc herniation: a common entity. Pediatr Neurosurg. 2013;49(1):16–20. https://doi.org/10.1159/000355127.

    Article  PubMed  Google Scholar 

  44. Le TV, Baaj AA, Deukmedjian A, Uribe JS, Vale FL. Chance fractures in the pediatric population. J Neurosurg Pediatr. 2011;8(2):189–97. https://doi.org/10.3171/2011.5.PEDS10538.

    Article  PubMed  Google Scholar 

  45. Hazen BJ, Keane OA, Vandewalle RJ, et al. Difference in presentation and concomitant intra-abdominal injury with chance fracture in pediatric and adult populations. Am Surg. 2022;2022:31348221102607. https://doi.org/10.1177/00031348221102607.

    Article  Google Scholar 

  46. Durel R, Rudman E, Milburn J. Clinical images - a quarterly column: chance fracture of the lumbar spine. Ochsner J. 2014;14(1):9–11.

    PubMed  PubMed Central  Google Scholar 

  47. Nash M, Rafay MF. Craniocervical arterial dissection in children: pathophysiology and management. Pediatr Neurol. 2019;95:9–18.

    Article  PubMed  Google Scholar 

  48. Bent C, Shen P, Dahlin B, Coulter K. Blunt intraoral trauma resulting in internal carotid artery dissection and infarction in a child. Pediatr Emerg Care. 2016;32(8):534–5. https://doi.org/10.1097/PEC.0000000000000321.

    Article  PubMed  Google Scholar 

  49. Al Ali A, Ganesan R, Nouri M, Shayna Z, Ranger A, Tay K. 736: chiropractic treatments and stroke with arterial dissection in an infant. Crit Care Med. 2021;49(1):364. https://doi.org/10.1097/01.ccm.0000728832.27003.18.

    Article  Google Scholar 

  50. Yang Y, Kapasi M, Abdeen N, Dos Santos MP, O’Connor MD. Traumatic carotid cavernous fistula in a pediatric patient. Can J Ophthalmol. 2015;50(4):318–21. https://doi.org/10.1016/j.jcjo.2015.05.014.

    Article  PubMed  Google Scholar 

  51. Dunklebarger J, Branstetter B, Lincoln A, et al. Pediatric temporal bone fractures: current trends and comparison of classification schemes. Laryngoscope. 2014;124(3):781–4. https://doi.org/10.1002/lary.21891.

    Article  PubMed  Google Scholar 

  52. Prisman E, Ramsden JD, Blaser S, Papsin B. Traumatic perilymphatic fistula with pneumolabyrinth: diagnosis and management. Laryngoscope. 2011;121(4):856–9. https://doi.org/10.1002/lary.21439.

    Article  PubMed  Google Scholar 

  53. Drexel S, Azarow K, Jafri MA. Abdominal trauma evaluation for the pediatric surgeon. Surg Clin North Am. 2017;97(1):59–74.

    Article  PubMed  Google Scholar 

  54. Sivit CJ. Imaging children with abdominal trauma. AJR Am J Roentgenol. 2009;192(5):1179–89.

    Article  PubMed  Google Scholar 

  55. Coccolini F, Montori G, Catena F, et al. Splenic trauma: WSES classification and guidelines for adult and pediatric patients. World J Emerg Surg. 2017;12:40.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lynn KN, Werder GM, Callaghan RM, Sullivan AN, Jafri ZH, Bloom DA. Pediatric blunt splenic trauma: a comprehensive review. Pediatr Radiol. 2009;39(9):904–16; quiz 1029–30. https://doi.org/10.1007/s00247-009-1336-0.

    Article  PubMed  Google Scholar 

  57. Bansal S, Karrer FM, Hansen K, Partrick DA. Contrast blush in pediatric blunt splenic trauma does not warrant the routine use of angiography and embolization. Am J Surg. 2015;210(2):345–50.

    Article  PubMed  Google Scholar 

  58. Davies DA, Ein SH, Pearl R, Langer JC, Traubici J, Mikrogianakis A, Wales PW. What is the significance of contrast “blush” in pediatric blunt splenic trauma? J Pediatr Surg. 2010;45(5):916–20.

    Article  PubMed  Google Scholar 

  59. Soto JA, Anderson SW. Multidetector CT of blunt abdominal trauma. Radiology. 2012;265(3):678–93.

    Article  PubMed  Google Scholar 

  60. Patrick LE, Ball TI, Atkinson GO, Winn KJ. Pediatric blunt abdominal trauma: periportal tracking at CT. Radiology. 1992;183(3):689–91.

    Article  CAS  PubMed  Google Scholar 

  61. Sivit CJ, Taylor GA, Eichelberger MR, Bulas DI, Gotschall CS, Kushner DC. Significance of periportal low-attenuation zones following blunt trauma in children. Pediatr Radiol. 1993;23(5):388–90.

    Article  CAS  PubMed  Google Scholar 

  62. Ibrahim A, Wales PW, Aquino MR, Chavhan GB. CT and MRI findings in pancreatic trauma in children and correlation with outcome. Pediatr Radiol. 2020;50(7):943–52. https://doi.org/10.1007/s00247-020-04642-z. Epub 2020 Mar 14. PMID: 32172401.

    Article  PubMed  Google Scholar 

  63. Englum BR, Gulack BC, Rice HE, Scarborough JE, Adibe OO. Management of blunt pancreatic trauma in children: review of the National Trauma Data Bank. J Pediatr Surg. 2016;51(9):1526–31.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Biyyam DR, Hwang S, Patel MC, Bardo DME, Bailey SS, Youssfi M. CT findings of pediatric handlebar injuries. Radiographics. 2020;40(3):815–26.

    Article  PubMed  Google Scholar 

  65. Wood J, Rubin DM, Nance ML, Christian CW. Distinguishing inflicted versus accidental abdominal injuries in young children. J Trauma. 2005;59(5):1203–8.

    Article  PubMed  Google Scholar 

  66. Carter KW, Moulton SL. Pediatric abdominal injury patterns caused by “falls”: a comparison between nonaccidental and accidental trauma. J Pediatr Surg. 2016;51(2):326–8.

    Article  PubMed  Google Scholar 

  67. Rosenfeld EH, Vogel A, Russell RT, Maizlin I, Klinkner DB, Polites S, Gaines B, Leeper C, Anthony S, Waddell M, St Peter S, Juang D, Thakkar R, Drews J, Behrens B, Jafri M, Burd RS, Beaudin M, Carmant L, Falcone RA Jr, Moody S, Naik-Mathuria BJ. Comparison of diagnostic imaging modalities for the evaluation of pancreatic duct injury in children: a multi-institutional analysis from the Pancreatic Trauma Study Group. Pediatr Surg Int. 2018;34(9):961–6.

    Article  PubMed  Google Scholar 

  68. Singer G, Arneitz C, Tschauner S, Castellani C, Till H. Trauma in pediatric urology. Semin Pediatr Surg. 2021;30(4):151085.

    Article  PubMed  Google Scholar 

  69. Paltiel HJ, Barth RA, Bruno C, et al. Contrast-enhanced ultrasound of blunt abdominal trauma in children. Pediatr Radiol. 2021;51:2253–69.

    Article  PubMed  Google Scholar 

  70. Chatoorgoon K, Brown RL, Garcia VF, Falcone RA Jr. Role of computed tomography and clinical findings in pediatric blunt intestinal injury: a multicenter study. Pediatr Emerg Care. 2012;28(12):1338–42.

    Article  PubMed  Google Scholar 

  71. Khasawneh R, Ramakrishnaiah RH, Singh S, Hegde SV. CT findings in pediatric blunt intestinal injury. Emerg Radiol. 2013;20(6):545–52.

    Article  PubMed  Google Scholar 

  72. Perea LL, San Roman J, Gaughan JP, Gefen R, Hazelton JP. Low-density isolated intraperitoneal free fluid in pediatric blunt trauma is not associated with abdominal injury. Pediatr Emerg Care. 2022;38(1):e143–6.

    Article  PubMed  Google Scholar 

  73. Berona K, Kang T, Rose E. Pelvic free fluid in asymptomatic pediatric blunt abdominal trauma patients: a case series and review of the literature. J Emerg Med. 2016;50(5):753–8. https://doi.org/10.1016/j.jemermed.2016.01.003. Epub 2016 Feb 13. PMID: 26884127.

    Article  PubMed  Google Scholar 

  74. Yu J, Fulcher AS, Wang DB, Turner MA, Ha JD, McCulloch M, Kennedy RM, Malhotra AK, Halvorsen RA. Frequency and importance of small amount of isolated pelvic free fluid detected with multidetector CT in male patients with blunt trauma. Radiology. 2010;256(3):799–805.

    Article  PubMed  Google Scholar 

  75. Vandewalle RJ, Barker SJ, Raymond JL, Brown BP, Rouse TM. Pediatric handlebar injuries: more than meets the abdomen. Pediatr Emerg Care. 2021;37(9):e517–23.

    Article  PubMed  Google Scholar 

  76. Klimek PM, Lutz T, Stranzinger E, Zachariou Z, Kessler U, Berger S. Handlebar injuries in children. Pediatr Surg Int. 2013;29(3):269–73.

    Article  PubMed  Google Scholar 

  77. Donnelly LF. Imaging issues in CT of blunt trauma to the chest and abdomen. Pediatr Radiol. 2009;39(3):406–13.

    Article  PubMed  Google Scholar 

  78. Moore MA, Wallace EC, Westra SJ. The imaging of paediatric thoracic trauma. Pediatr Radiol. 2009;39(5):485–96.

    Article  PubMed  Google Scholar 

  79. Stephens CQ, Boulos MC, Connelly CR, Gee A, Jafri M, Krishnaswami S. Limiting thoracic CT: a rule for use during initial pediatric trauma evaluation. J Pediatr Surg. 2017;52(12):2031–7.

    Article  PubMed  Google Scholar 

  80. Holl EM, Marek AP, Nygaard RM, Richardson CJ, Hess DJ. Use of chest computed tomography for blunt pediatric chest trauma: does it change clinical course? Pediatr Emerg Care. 2020;36(2):81–6.

    Article  PubMed  Google Scholar 

  81. Patel RP, Hernanz-Schulman M, Hilmes MA, Yu C, Ray J, Kan JH. Pediatric chest CT after trauma: impact on surgical and clinical management. Pediatr Radiol. 2010;40(7):1246–53.

    Article  PubMed  Google Scholar 

  82. Azari S, Hoover T, Dunstan M, Harrison TJ, Browne M. Review, monitor, educate: a quality improvement initiative for sustained chest radiation reduction in pediatric trauma patients. Am J Surg. 2020;220(5):1327–32.

    Article  PubMed  Google Scholar 

  83. Golden J, Isani M, Bowling J, et al. Limiting chest computed tomography in the evaluation of pediatric thoracic trauma. J Trauma Acute Care Surg. 2016;81(2):271–7.

    Article  PubMed  Google Scholar 

  84. Hammer MR, Dillman JR, Chong ST, Strouse PJ. Imaging of pediatric thoracic trauma. Semin Roentgenol. 2012;47(2):135–46.

    Article  PubMed  Google Scholar 

  85. Samet JD. Pediatric sports injuries. Clin Sports Med. 2021;40(4):781–99.

    Article  PubMed  Google Scholar 

  86. Ho-Fung VM, Zapala MA, Lee EY. Musculoskeletal traumatic injuries in children. Radiol Clin N Am. 2017;55(4):785–802.

    Article  PubMed  Google Scholar 

  87. Brian JM, Choi DH, Moore MM. The primary physis. Semin Musculoskelet Radiol. 2018;22(1):095–103.

    Article  Google Scholar 

  88. Eismann EA, Stephan ZA, Mehlman CT, Denning J, Mehlman T, Parikh SN, Tamai J, Zbojniewicz A. Pediatric triplane ankle fractures: impact of radiographs and computed tomography on fracture classification and treatment planning. J Bone Joint Surg Am. 2015;97(12):995–1002.

    Article  PubMed  Google Scholar 

  89. Olgun ZD, Maestre S. Management of pediatric ankle fractures. Curr Rev Musculoskelet Med. 2018;11(3):475–84.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Silber JS, Flynn JM, Katz MA, Ganley TJ, Koffler KM, Drummond DS. Role of computed tomography in the classification and management of pediatric pelvic fractures. J Pediatr Orthop. 2001;21(2):148–51.

    Article  CAS  PubMed  Google Scholar 

  91. Bent MA, Hennrikus WL, Latorre JE, Armstrong DG, Shaw B, Jones KC, Segal LS. Role of computed tomography in the classification of pediatric pelvic fractures-revisited. J Orthop Trauma. 2017;31(7):e200–4.

    Article  PubMed  Google Scholar 

  92. https://www.acf.hhs.gov/cb/report/child-maltreatment-2021.

  93. Wootton-Gorges SL, Soares BP, Alazraki AL, Anupindi SA, Blount JP, Booth TN, Dempsey ME, Falcone RA Jr, Hayes LL, Kulkarni AV, Partap S, Rigsby CK, Ryan ME, Safdar NM, Trout AT, Widmann RF, Karmazyn BK, Palasis S, Expert Panel on Pediatric Imaging. ACR appropriateness Criteria® suspected physical abuse-child. J Am Coll Radiol. 2017;14(5S):S338–49.

    Article  PubMed  Google Scholar 

  94. Choudhary AK, Servaes S, Slovis TL, Palusci VJ, Hedlund GL, Narang SK, Moreno JA, Dias MS, Christian CW, Nelson MD Jr, Silvera VM, Palasis S, Raissaki M, Rossi A, Offiah AC. Consensus statement on abusive head trauma in infants and young children. Pediatr Radiol. 2018;48(8):1048–65. https://doi.org/10.1007/s00247-018-4149-1.

    Article  PubMed  Google Scholar 

  95. Hedlund G. Abusive head trauma: extra-axial hemorrhage and nonhemic collections. In: Kleinman P, editor. Diagnostic imaging of child abuse. Cambridge: Cambridge University Press; 2015. p. 394–452.

    Chapter  Google Scholar 

  96. Bradford R, Choudhary AK, Dias MS. Serial neuroimaging in infants with abusive head trauma: timing abusive injuries. J Neurosurg Pediatr. 2013;12(2):110–9. https://doi.org/10.3171/2013.4.PEDS12596.

    Article  PubMed  Google Scholar 

  97. Wittschieber D, Karger B, Pfeiffer H, Hahnemann ML. Understanding subdural collections in pediatric abusive head trauma. AJNR Am J Neuroradiol. 2019;40(3):388–95. https://doi.org/10.3174/ajnr.A5855. Epub 2018 Dec 6. PMID: 30523144; PMCID: PMC7028666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ichord RN, Naim M, Pollock AN, Nance ML, Margulies SS, Christian CW. Hypoxic-ischemic injury complicates inflicted and accidental traumatic brain injury in young children: the role of diffusion-weighted imaging. J Neurotrauma. 2007;24(1):106–18. https://doi.org/10.1089/neu.2006.0087.

    Article  PubMed  Google Scholar 

  99. Bhardwaj G, Chowdhury V, Jacobs MB, Moran KT, Martin FJ, Coroneo MT. A systematic review of the diagnostic accuracy of ocular signs in pediatric abusive head trauma. Ophthalmology. 2010;117(5):983–992.e17. https://doi.org/10.1016/j.ophtha.2009.09.040.

    Article  PubMed  Google Scholar 

  100. Choudhary AK, Ishak R, Zacharia TT, Dias MS. Imaging of spinal injury in abusive head trauma: a retrospective study. Pediatr Radiol. 2014;44(9):1130–40. https://doi.org/10.1007/s00247-014-2959-3.

    Article  PubMed  Google Scholar 

  101. Piteau SJ, Ward MGK, Barrowman NJ, Plint AC. Clinical and radiographic characteristics associated with abusive and nonabusive head trauma: a systematic review. Pediatrics. 2012;130(2):315–23. https://doi.org/10.1542/peds.2011-1545.

    Article  PubMed  Google Scholar 

  102. Kemp AM, Jaspan T, Griffiths J, et al. Neuroimaging: what neuroradiological features distinguish abusive from non-abusive head trauma? A systematic review. Arch Dis Child. 2011;96(12):1103–12. https://doi.org/10.1136/archdischild-2011-300630.

    Article  CAS  PubMed  Google Scholar 

  103. Brousseau TJ, Kissoon N, McIntosh B. Vitamin K deficiency mimicking child abuse. J Emerg Med. 2005;29(3):283–8. https://doi.org/10.1016/j.jemermed.2005.02.009.

    Article  PubMed  Google Scholar 

  104. Idriz S, Patel JH, Ameli Renani S, Allan R, Vlahos I. CT of normal developmental and variant anatomy of the pediatric skull: distinguishing trauma from normality. Radiographics. 2015;35(5):1585–601. https://doi.org/10.1148/rg.2015140177.

    Article  PubMed  Google Scholar 

  105. Khosroshahi N, Nikkhah A. Benign enlargement of subarachnoid space in infancy: “a review with emphasis on diagnostic work-up”. Iran J Child Neurol. 2018;12(4):7–15.

    PubMed  PubMed Central  Google Scholar 

  106. McNeely PD, Atkinson JD, Saigal G, O’Gorman AM, Farmer JP. Subdural hematomas in infants with benign enlargement of the subarachnoid spaces are not pathognomonic for child abuse. AJNR Am J Neuroradiol. 2006;27(8):1725–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Henry MK, Bennett CE, Wood JN, Servaes S. Evaluation of the abdomen in the setting of suspected child abuse. Pediatr Radiol. 2021;51(6):1044–50.

    Article  PubMed  Google Scholar 

  108. Pomeranz CB, Barrera CA, Servaes SE. Value of chest CT over skeletal surveys in detection of rib fractures in pediatric patients. Clin Imaging. 2022;82:103–9.

    Article  PubMed  Google Scholar 

  109. Sanchez TR, Lee JS, Coulter KP, Seibert JA, Stein-Wexler R. CT of the chest in suspected child abuse using submillisievert radiation dose. Pediatr Radiol. 2015;45(7):1072–6.

    Article  PubMed  Google Scholar 

  110. Barrera CA, Silvestro E, Calle-Toro JS, Scribano PV, Wood JN, Henry MK, Andronikou S. Three-dimensional printed models of the rib cage in children with non-accidental injury as an effective visual-aid tool. Pediatr Radiol. 2019;49(7):965–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kandula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, N., Schenker, K.E., Nikam, R., Kandula, V. (2023). Pediatric Trauma Computed Tomography: A Comprehensive Guide. In: Knollmann, F. (eds) Trauma Computed Tomography. Springer, Cham. https://doi.org/10.1007/978-3-031-45746-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45746-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45745-6

  • Online ISBN: 978-3-031-45746-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics