Skip to main content

Compact Gravity-Balanced Design of Serial Robots Under Payload Variation

  • Conference paper
  • First Online:
Advances in Mechanism and Machine Science (IFToMM WC 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 149))

Included in the following conference series:

  • 584 Accesses

Abstract

This paper presents a gravity-balanced design of serial robots under payload variation. The proposed design is realized by installing a compact gear-spring mechanism (CGSM) onto each joint so that the gravitational torque at the joint is canceled by the supplemental spring force. The significance of this design is that it can perfectly balance variable payloads through an energy-free adjustment of the spring position. In this work, the design concept, modeling, performance analysis, and practical demonstration of the gravity-balanced design of the robot are described. It was found that a theoretical model of a robot can completely cancel the gravitational torques at the joints with the proposed design. Moreover, the motor torques of the robot were practically reduced significantly, with a torque reduction rate of 74.1% for a 1 kg payload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arakelian, V., Briot, S.: Balancing of linkages and robot manipulators: advanced methods with illustrative examples. Mechanisms and Machine Science. Springer International Publishing Switzerland (2015)

    Google Scholar 

  2. Carricato, M., Gosselin, C.: A statically balanced Gough/Stewart-type platform: conception, design, and simulation. ASME J. Mech. Robot. 1(3), 031005 (2009)

    Article  Google Scholar 

  3. Arakelian, V.: Gravity compensation in robotics. Adv. Robot. 30(2), 79–96 (2016)

    Article  Google Scholar 

  4. Ludovico, D., Guardiani, P., Lasagni, F., Lee, J., Cannella, F., Caldwell, D.G.: Design of non-circular pulleys for torque generation: a convex optimisation approach. IEEE Robot. Autom. Lett. 6(2), 958–965 (2021)

    Article  Google Scholar 

  5. Nguyen, V.L.: Gravity balancing of a two-degree-of-freedom parallel robotic platform with variable payloads. ASME J. Mech. Des. 145(2), 024501 (2023)

    Article  Google Scholar 

  6. Herder, J.L.: Energy-free systems: theory, conception and design of statically balanced spring mechanisms. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands (2001)

    Google Scholar 

  7. Audet, J.M., Gosselin, C.: Intuitive physical human-robot interaction using an underactuated redundant manipulator with complete spatial rotational capabilities. ASME J. Mech. Robot 14(1), 011011 (2022)

    Article  Google Scholar 

  8. van der Wijk, V.: The Grand 4R four-bar based inherently balanced linkage architecture for synthesis of shaking force balanced and gravity force balanced mechanisms. Mech. Mach. Theory 150, 103815 (2020)

    Article  Google Scholar 

  9. Nguyen, V.L., Lin, C.-Y., Kuo, C.-H.: Gravity compensation design of Delta parallel robots using gear-spring modules. Mech. Mach. Theory 154, 104046 (2020)

    Article  Google Scholar 

  10. Kuo, C.-H., Nguyen, V.L., Robertson, D., Chou, L.-T., Herder, J.L.: Statically balancing a reconfigurable mechanism by using one passive energy element only: a case study. ASME J. Mech. Robot. 13(4), 040904 (2021)

    Article  Google Scholar 

  11. Lin, P.-Y., Shieh, W.-B., Chen, D.-Z.: Design of statically balanced planar articulated manipulators with spring suspension. IEEE Trans. Rob. 28(1), 12–21 (2012)

    Article  Google Scholar 

  12. Nguyen, V.L., Kuo, C.-H., Lin, P.T.: Reliability-based analysis and optimization of the gravity balancing performance of spring-articulated serial robots with uncertainties. ASME J. Mech. Robot. 14(3), 031016 (2022)

    Article  Google Scholar 

  13. Jamshidifar, H., et al.: A novel mechanism for gravity-balancing of serial robots with high-dexterity applications. IEEE Trans. Med. Robot. Bionics 3(3), 750–761 (2021)

    Article  Google Scholar 

  14. Lee, D., Seo, T.: Lightweight multi-DOF manipulator with wire-driven gravity compensation mechanism. IEEE/ASME Trans. Mechatron.Mechatron. 22(3), 1308–1314 (2017)

    Article  Google Scholar 

  15. Kim, H.-S., Song, J.-B.: Multi-DOF counterbalance mechanism for a service robot arm. IEEE/ASME Trans. Mechatron.Mechatron. 19(6), 1756–1763 (2014)

    Article  Google Scholar 

  16. Nguyen, V.L.: A design approach for gravity compensators using planar four-bar mechanisms and a linear spring. Mech. Mach. Theory 172, 104770 (2022)

    Article  Google Scholar 

  17. Nguyen, V.L.: Realization of a gear-spring balancer with variable payloads and its application to serial robots. ASME J. Mech. Robot. 15(4), 041013 (2022)

    Article  MathSciNet  Google Scholar 

  18. Tschiersky, M., Hekman, E.E., Brouwer, D.M., Herder, J.L.: Gravity balancing flexure springs for an assistive elbow orthosis. IEEE Trans. Med. Robot. Bionics 1(3), 177–188 (2019)

    Article  Google Scholar 

  19. Arakelian, V., Zhang, Y.: An improved design of gravity compensators based on the inverted slider-crank mechanism. ASME J. Mech. Robot. 11(3), 034501 (2019)

    Article  Google Scholar 

  20. Fedorov, D., Birglen, L.: Differential noncircular pulleys for cable robots and static balancing. ASME J. Mech. Robot. 10(6), 061001 (2018)

    Article  Google Scholar 

  21. Kim, B., Deshpande, A.D.: Design of nonlinear rotational stiffness using a noncircular pulley-spring mechanism. ASME J. Mech. Robot. 6(4), 041009 (2014)

    Article  Google Scholar 

  22. Koser, K.: A cam mechanism for gravity-balancing. Mech. Res. Commun.Commun. 36(4), 523–530 (2009)

    Article  MATH  Google Scholar 

  23. Ulrich, N., Kumar, V.: Passive mechanical gravity compensation for robot manipulators. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1536–1541. Sacramento, CA, USA, 9–11 Apr 1991

    Google Scholar 

  24. Min, J.-K., Kim, D.-W., Song, J.-B.: A wall-mounted robot arm equipped with a 4-DOF yaw-pitch-yaw-pitch counterbalance mechanism. IEEE Robot. Autom. Lett. 5(3), 3768–3774 (2020)

    Article  Google Scholar 

  25. Nguyen, V.L., Lin, C.-Y., Kuo, C.-H.: Gravity compensation design of planar articulated robotic arms using the gear-spring modules. ASME J. Mech. Robot. 12(3), 031014 (2020)

    Article  Google Scholar 

  26. Barajas, J.C., Paz, R.A.: Autobalancing a generalized gravity equilibrator. Int. J. Dyn. Control 4, 515–526 (2016)

    Article  MathSciNet  Google Scholar 

  27. Kim, J., Moon, J., Kim, J., Lee, G.: Compact variable gravity compensation mechanism with a geometrically optimized lever for maximizing variable ratio of torque generation. IEEE/ASME Trans. Mechatron.Mechatron. 25(4), 2019–2026 (2020)

    Article  Google Scholar 

  28. Van Dorsser, W., Barents, R., Wisse, B., Schenk, M., Herder, J.: Energy-free adjustment of gravity equilibrators by adjusting the spring stiffness. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 222(9), 1839–1846 (2008)

    Article  Google Scholar 

  29. Kim, J., Moon, J., Ryu, J., Lee, G.: CVGC-II: a new version of a compact variable gravity compensator (CVGC) with a wider range of variable torque and energy-free variable mechanism. IEEE/ASME Trans. Mechatron.Mechatron. 27(2), 678–689 (2021)

    Article  Google Scholar 

  30. Chew, D.X., Wood, K.L., Tan, U.: Design of a passive self-regulating gravity compensator for variable payloads. ASME J. Mech. Des. 141(10), 102302 (2019)

    Article  Google Scholar 

  31. Takesue, N., Ikematsu, T., Murayama, H., Fujimoto, H.: Design and prototype of variable gravity compensation mechanism (VGCM). J. Robot. Mechatronics 23(2), 249–257 (2011)

    Article  Google Scholar 

  32. Briot, S., Arakelian, V.: A new energy-free gravity-compensation adaptive system for balancing of 4-DOF robot manipulators with variable payloads. In: Proceedings of the 14th IFToMM World Congress, Taipei, Taiwan, 25–30 Oct 2015

    Google Scholar 

  33. Nguyen, V.L.: Design of a compact gear-spring mechanism for static balancing of variable payloads. ASME J. Mech. Des. 144(12), 123301 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Linh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, V.L. (2024). Compact Gravity-Balanced Design of Serial Robots Under Payload Variation. In: Okada, M. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2023. Mechanisms and Machine Science, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-031-45709-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45709-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45708-1

  • Online ISBN: 978-3-031-45709-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics