Skip to main content

3D Transformer Based on Deformable Patch Location for Differential Diagnosis Between Alzheimer’s Disease and Frontotemporal Dementia

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14349))

Included in the following conference series:

  • 643 Accesses

Abstract

Alzheimer’s disease and Frontotemporal dementia are common types of neurodegenerative disorders that present overlapping clinical symptoms, making their differential diagnosis very challenging. Numerous efforts have been done for the diagnosis of each disease but the problem of multi-class differential diagnosis has not been actively explored. In recent years, transformer-based models have demonstrated remarkable success in various computer vision tasks. However, their use in disease diagnostic is uncommon due to the limited amount of 3D medical data given the large size of such models. In this paper, we present a novel 3D transformer-based architecture using a deformable patch location module to improve the differential diagnosis of Alzheimer’s disease and Frontotemporal dementia. Moreover, to overcome the problem of data scarcity, we propose an efficient combination of various data augmentation techniques, adapted for training transformer-based models on 3D structural magnetic resonance imaging data. Finally, we propose to combine our transformer-based model with a traditional machine learning model using brain structure volumes to better exploit the available data. Our experiments demonstrate the effectiveness of the proposed approach, showing competitive results compared to state-of-the-art methods. Moreover, the deformable patch locations can be visualized, revealing the most relevant brain regions used to establish the diagnosis of each disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://ida.loni.usc.edu/.

References

  1. Avants, B.B., et al.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011)

    Article  Google Scholar 

  2. Bang, J., et al.: Frontotemporal dementia. The Lancet 386, 1672–1682 (2015)

    Article  Google Scholar 

  3. Beekly, D.L., et al.: The National Alzheimer’s Coordinating Center (NACC) database: the uniform data set. Alzheimer Disease Associat. Disord. 21, 249–258 (2007)

    Article  Google Scholar 

  4. Boeve, B.F., et al.: Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and therapeutic considerations. Lancet Neurol. 21, 258–272 (2022)

    Article  Google Scholar 

  5. Brambati, S.M., et al.: A tensor based morphometry study of longitudinal gray matter contraction in FTD. Neuroimage 35(3), 998–1003 (2007)

    Article  Google Scholar 

  6. Coupé, P., et al.: Lifespan changes of the human brain in Alzheimer’s disease. Sci. Rep. 9, 3998 (2019)

    Article  Google Scholar 

  7. Coupé, P., et al.: AssemblyNet: a large ensemble of CNNs for 3D whole brain MRI segmentation. Neuroimage 219, 117026 (2020)

    Article  Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv:2010.11929 (2020)

  9. Du, A.T., et al.: Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain 130, 1159–1166 (2006)

    Article  Google Scholar 

  10. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUS). arXiv preprint arXiv:1606.08415 (2016)

  11. Hu, J., et al.: Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer’s disease. Front. Neurosci. 14, 626154 (2021)

    Article  Google Scholar 

  12. Hussain, Z., Gimenez, F., Yi, D., Rubin, D.: Differential data augmentation techniques for medical imaging classification tasks. In: AMIA Annual Symposium Proceedings, vol. 2017, p. 979 (2017)

    Google Scholar 

  13. Hutchinson, A.D., et al.: Neuropsychological deficits in frontotemporal dementia and Alzheimer’s disease: a meta-analytic review. J. Neurol. Neurosurg. Psychiatry 78, 917–928 (2007)

    Article  Google Scholar 

  14. Jack, C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27, 685–691 (2008)

    Article  Google Scholar 

  15. Jang, J., Hwang, D.: M3t: three-dimensional Medical image classifier using multi-plane and multi-slice transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20718–20729 (2022)

    Google Scholar 

  16. Li, C., et al.: Trans-ResNet: integrating transformers and CNNs for Alzheimer’s disease classification. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5 (2022)

    Google Scholar 

  17. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  18. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  19. Lyu, Y., et al.: Classification of Alzheimer’s disease via vision transformer. In: Proceedings of the 15th International Conference on Pervasive Technologies Related to Assistive Environments, pp. 463–468 (2022)

    Google Scholar 

  20. Ma, D., et al.: Differential diagnosis of frontotemporal dementia, Alzheimer’s disease, and normal aging using a multi-scale multi-type feature generative adversarial deep neural network on structural magnetic resonance images. Front. Neurosci. 14, 853 (2020)

    Article  Google Scholar 

  21. Manjón, J.V., et al.: Robust MRI brain tissue parameter estimation by multistage outlier rejection. Magn. Reson. Med. 59, 866–873 (2008)

    Article  Google Scholar 

  22. Manjón, J.V., et al.: Adaptive non-local means denoising of MR images with spatially varying noise levels: spatially adaptive nonlocal denoising. J. Magn. Reson. Imaging 31, 192–203 (2010)

    Article  Google Scholar 

  23. Manjón, J.V., et al.: Nonlocal intracranial cavity extraction. Int. J. Biomed. Imaging 2014, 1–11 (2014)

    Article  Google Scholar 

  24. Möller, C., et al.: Alzheimer disease and behavioral variant frontotemporal dementia: automatic cassification based on cortical atrophy for single-subject diagnosis. Radiology 279, 838–848 (2016)

    Article  Google Scholar 

  25. Nalepa, J., Marcinkiewicz, M., Kawulok, M.: Data augmentation for brain-tumor segmentation: a review. Front. Comput. Neurosci. 13, 83 (2019)

    Article  Google Scholar 

  26. Nguyen, H., et al.: Interpretable differential diagnosis for Alzheimer’s disease and frontotemporal dementia. In: Medical Image Computing and Computer Assisted Intervention, pp. 61–69 (2022)

    Google Scholar 

  27. Pini, L., et al.: Brain atrophy in Alzheimer’s disease and aging. Ageing Res. Rev. 30, 25–48 (2016)

    Article  Google Scholar 

  28. Rascovsky, K., et al.: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011)

    Article  Google Scholar 

  29. Rosen, H.J., et al.: Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 58(2), 198–208 (2002)

    Article  Google Scholar 

  30. Schuff, N., et al.: MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 132, 1067–1077 (2009)

    Article  Google Scholar 

  31. Silhan, D., et al.: The parietal atrophy score on brain magnetic resonance imaging is a reliable visual scale. Curr. Alzheimer Res. 17(6), 534–539 (2020)

    Article  Google Scholar 

  32. Touvron, H., Vedaldi, A., Douze, M., Jégou, H.: Fixing the train-test resolution discrepancy. Adv. Neural Inf. Processing Syst. 32 (2019)

    Google Scholar 

  33. Touvron, H., et al.: Training data-efficient image transformers and distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357 (2021)

    Google Scholar 

  34. Touvron, H., Cord, M., El-Nouby, A., Verbeek, J., Jégou, H.: Three things everyone should know about vision transformers. In: Avidan, S., et al. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXIV, pp. 497–515. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20053-3_29

  35. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)

    Article  Google Scholar 

  36. Whitwell, J.L., et al.: Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain 132, 2932–2946 (2009)

    Article  Google Scholar 

  37. Xia, Z., et al.: Vision transformer with deformable attention. In: Conference on Computer Vision and Pattern Recognition, pp. 4794–4803 (2022)

    Google Scholar 

  38. Yew, B., et al.: Lost and forgotten? Orientation versus memory in Alzheimer’s disease and frontotemporal dementia. J. Alzheimer’s Dis. JAD 33, 473–481 (2013)

    Article  Google Scholar 

  39. Zhang, H., et al.: mixup: beyond empirical risk minimization. arXiv:1710.09412 (2018)

  40. Zhang, S., et al.: 3D Global Fourier Network for Alzheimer’s disease diagnosis using structural MRI. In: Medical Image Computing and Computer Assisted Intervention, pp. 34–43 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huy-Dung Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, HD., Clément, M., Mansencal, B., Coupé, P. (2024). 3D Transformer Based on Deformable Patch Location for Differential Diagnosis Between Alzheimer’s Disease and Frontotemporal Dementia. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics