Skip to main content

PECon: Contrastive Pretraining to Enhance Feature Alignment Between CT and EHR Data for Improved Pulmonary Embolism Diagnosis

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Abstract

Previous deep learning efforts have focused on improving the performance of Pulmonary Embolism (PE) diagnosis from Computed Tomography (CT) scans using Convolutional Neural Networks (CNN). However, the features from CT scans alone are not always sufficient for the diagnosis of PE. CT scans along with electronic heath records (EHR) can provide a better insight into the patient’s condition and can lead to more accurate PE diagnosis. In this paper, we propose Pulmonary Embolism Detection using Contrastive Learning (PECon), a supervised contrastive pretraining strategy that employs both the patient’s CT scans as well as the EHR data, aiming to enhance the alignment of feature representations between the two modalities and leverage information to improve the PE diagnosis. In order to achieve this, we make use of the class labels and pull the sample features of the same class together, while pushing away those of the other class. Results show that the proposed work outperforms the existing techniques and achieves state-of-the-art performance on the RadFusion dataset with an F1-score of 0.913, accuracy of 0.90 and an AUROC of 0.943. Furthermore, we also explore the explainability of our approach in comparison to other methods. Our code is publicly available at https://github.com/BioMedIA-MBZUAI/PECon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bělohlávek, J., Dytrych, V., Linhart, A.: Pulmonary embolism, part I: epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism. Exp. Clin. Cardiol. 18(2), 129–138 (2013)

    Google Scholar 

  2. Tarbox, A., Swaroop, M.: Pulmonary embolism. Int. J. Crit. Illn. Inj. Sci. 3(1), 69–72 (2013). https://doi.org/10.4103/2229-5151.109427, https://www.ijciis.org/text.asp?2013/3/1/69/109427

  3. Hendriksen, J.M.T., et al.: Clinical characteristics associated with diagnostic delay of pulmonary embolism in primary care: a retrospective observational study. BMJ Open 7(3), e012789 (2017). https://doi.org/10.1136/bmjopen-2016-012789

    Article  Google Scholar 

  4. Alonso-Martínez, J.L., Sánchez, F.J., Echezarreta, M.A.: Delay and misdiagnosis in sub-massive and non-massive acute pulmonary embolism. Eur. J. Intern. Med. 21, 278–282 (2010). https://doi.org/10.1016/J.EJIM.2010.04.005, https://pubmed.ncbi.nlm.nih.gov/20603035/

  5. Masutani, Y., MacMahon, H., Doi, K.: Computerized detection of pulmonary embolism in spiral CT angiography based on volumetric image analysis. IEEE Trans. Med. Imaging 21(12), 1517–1523 (2002). https://doi.org/10.1109/TMI.2002.806586

    Article  Google Scholar 

  6. Liang, J., Bi, J.: Computer aided detection of pulmonary embolism with tobogganing and mutiple instance classification in CT pulmonary angiography. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 630–641. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73273-0_52

    Chapter  Google Scholar 

  7. Lin, Y., et al.: Automated pulmonary embolism detection from CTPA images using an end-to-end convolutional neural network. In: Shen, D. (ed.) MICCAI 2019. LNCS, vol. 11767, pp. 280–288. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_31

    Chapter  Google Scholar 

  8. Khachnaoui, H., Agrébi, M., Halouani, S., Khlifa, N.: Deep learning for automatic pulmonary embolism identification using CTA images. In: 2022 6th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), pp. 1–6 (2022). https://doi.org/10.1109/ATSIP55956.2022.9805929

  9. Suman, S., et al.: Attention based CNN-LSTM network for pulmonary embolism prediction on chest computed tomography pulmonary angiograms (2021). https://arxiv.org/abs/2107.06276

  10. Huang, S.C., et al.: PENet-a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ Digital Med. 3(1), 61 (2020). https://doi.org/10.1038/s41746-020-0266-y

  11. Li, H., Fan, Y.: Early prediction of Alzheimer’s disease dementia based on baseline hippocampal MRI and 1-year follow-up cognitive measures using deep recurrent neural networks. In: Proceedings. IEEE International Symposium on Biomedical Imaging 2019, pp. 368–371 (2019). https://doi.org/10.1109/ISBI.2019.8759397

  12. Kawahara, J., Daneshvar, S., Argenziano, G., Hamarneh, G.: Seven-point checklist and skin lesion classification using multitask multimodal neural nets. IEEE J. Biomed. Health Inform. 23(2), 538–546 (2019). https://doi.org/10.1109/JBHI.2018.2824327

    Article  Google Scholar 

  13. Huang, S.C., Pareek, A., Zamanian, R., Banerjee, I., Lungren, M.P.: Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection. Sci. Rep. 10(1), 1–9 (2020)

    Article  Google Scholar 

  14. Zhou, Y., et al.: RadFusion: benchmarking performance and fairness for multimodal pulmonary embolism detection from CT and EHR (2021). https://arxiv.org/abs/2111.11665

  15. Zhang, Y., Jiang, H., Miura, Y., Manning, C.D., Langlotz, C.P.: Contrastive learning of medical visual representations from paired images and text. In: Machine Learning for Healthcare Conference, pp. 2–25. PMLR (2022)

    Google Scholar 

  16. Zhang, S., et al.: Large-scale domain-specific pretraining for biomedical vision-language processing. arXiv preprint arXiv:2303.00915 (2023)

  17. Gu, Y., et al.: Domain-specific language model pretraining for biomedical natural language processing. ACM Trans. Comput. Healthc. (HEALTH) 3(1), 1–23 (2021)

    Google Scholar 

  18. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  19. Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., Zisserman, A.: A short note about kinetics-600 (2018). arXiv:1808.01340

  20. Albrecht, M.H., et al.: State-of-the-art pulmonary CT angiography for acute pulmonary embolism. Am. J. Roentgenol. 208(3), 495–504 (2016). https://doi.org/10.2214/AJR.16.17202

    Article  Google Scholar 

  21. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  23. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow Twins: self-supervised learning via redundancy reduction (2021). https://arxiv.org/abs/2103.03230

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Sanjeev .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 97 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanjeev, S., Al Khatib, S.K., Shaaban, M.A., Almakky, I., Papineni, V.R., Yaqub, M. (2024). PECon: Contrastive Pretraining to Enhance Feature Alignment Between CT and EHR Data for Improved Pulmonary Embolism Diagnosis. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics