Skip to main content

Arbitrary Reduction of MRI Inter-slice Spacing Using Hierarchical Feature Conditional Diffusion

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14348))

Included in the following conference series:

  • 591 Accesses

Abstract

Magnetic resonance (MR) images collected in 2D scanning protocols typically have large inter-slice spacing, resulting in high in-plane resolution but reduced through-plane resolution. Super-resolution techniques can reduce the inter-slice spacing of 2D scanned MR images, facilitating the downstream visual experience and computer-aided diagnosis. However, most existing super-resolution methods are trained at a fixed scaling ratio, which is inconvenient in clinical settings where MR scanning may have varying inter-slice spacings. To solve this issue, we propose Hierarchical Feature Cond itional Diffusion (HiFi-Diff) for arbitrary reduction of MR inter-slice spacing. Given two adjacent MR slices and the relative positional offset, HiFi-Diff can iteratively convert a Gaussian noise map into any desired in-between MR slice. Furthermore, to enable fine-grained conditioning, the Hierarchical Feature Extraction (HiFE) module is proposed to hierarchically extract conditional features and conduct element-wise modulation. Our experimental results on the publicly available HCP-1200 dataset demonstrate the high-fidelity super-resolution capability of HiFi-Diff and its efficacy in enhancing downstream segmentation performance.

X. Wang and Z. Shen—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaudhari, A.S., et al.: Super-resolution musculoskeletal MRI using deep learning. Magn. Reson. Med. 80(5), 2139–2154 (2018)

    Article  Google Scholar 

  2. Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local implicit image function. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8624–8634 (2021). DOI: https://doi.org/10.1109/CVPR46437.2021.00852

  3. Chung, H., Lee, E.S., Ye, J.C.: MR image denoising and super-resolution using regularized reverse diffusion. IEEE Trans. Med. Imaging 42, 922–934 (2022)

    Article  Google Scholar 

  4. Cui, Z.X., et al.: Self-score: self-supervised learning on score-based models for MRI reconstruction. arXiv preprint arXiv:2209.00835 (2022)

  5. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  Google Scholar 

  6. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)

    Google Scholar 

  7. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016). https://doi.org/10.1109/TPAMI.2015.2439281

    Article  Google Scholar 

  8. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013). mapping the Connectome

    Article  Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  10. Henschel, L., Conjeti, S., Estrada, S., Diers, K., Fischl, B., Reuter, M.: FastSurfer-a fast and accurate deep learning based neuroimaging pipeline. Neuroimage 219, 117012 (2020)

    Article  Google Scholar 

  11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  12. Hu, X., Mu, H., Zhang, X., Wang, Z., Tan, T., Sun, J.: Meta-SR: a magnification-arbitrary network for super-resolution. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1575–1584 (2019). https://doi.org/10.1109/CVPR.2019.00167

  13. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: Fsl. NeuroImage 62(2), 782–790 (2012)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014), cite arxiv:1412.6980Comment: Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego, 2015

  15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  16. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS 2017 Workshop on Autodiff (2017)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  18. Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. CoRR abs/1606.03498, http://arxiv.org/abs/1606.03498 (2016)

  19. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265. PMLR (2015)

    Google Scholar 

  20. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  21. Wu, Q., et al.: An arbitrary scale super-resolution approach for 3-Dimensional magnetic resonance image using implicit neural representation (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X. et al. (2024). Arbitrary Reduction of MRI Inter-slice Spacing Using Hierarchical Feature Conditional Diffusion. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics