Skip to main content

Implicitly Solved Regularization for Learning-Based Image Registration

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14348))

Included in the following conference series:

  • 561 Accesses

Abstract

Deformable image registration is a fundamental step in many medical image analysis tasks and has attracted a large amount of research to develop efficient and accurate unsupervised machine learning approaches. Although much attention has been paid to finding suitable similarity measures, network architectures and training methods, much less research has been devoted to suitable regularization techniques to ensure the plausibility of the learned deformations.

In this paper, we propose implicitly solved regularizers for unsupervised and weakly supervised learning of deformable image registration. In place of pure gradient descent with automatic differentiation, we combine efficient implicit solvers for the regularization term with the established gradient-based optimization regarding the network parameters. As a result, our approach is broadly applicable and can be combined with a range of similarity measures and network architectures. Our experiments with state-of-the-art network architectures show that the proposed approach has the potential to increase the smoothness, i.e. the plausibility, of the learned deformations and the registration accuracy measured as dice overlaps. Furthermore, we show that due to efficient GPU implementations of the implicit solvers, this increase in plausibility and accuracy comes at almost no additional cost in terms of computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    git.opendfki.de/jan.ehrhardt/implicitly-solved-regularization.

  2. 2.

    www.braindevelopment.org.

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  2. Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: A cooperative autoencoder for population-based regularization of CNN image registration. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 391–400. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_44

  3. Burger, M., Modersitzki, J., Ruthotto, L.: A hyperelastic regularization energy for image registration. SIAM J. Sci. Comput. 35(1), B132–B148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.: Iconic feature based nonrigid registration: the PASHA algorithm. Comput. Vis. Image Underst. 89(2), 272–298 (2003)

    Article  MATH  Google Scholar 

  5. Chen, J., Frey, E.C., He, Y., Segars, W.P., Li, Y., Du, Y.: TransMorph: transformer for unsupervised medical image registration. Med. Image Anal. 82, 102615 (2022)

    Article  Google Scholar 

  6. Chen, J., He, Y., Frey, E., Li, Y., Du, Y.: ViT-V-Net: vision transformer for unsupervised volumetric medical image registration. arXiv preprint arXiv:2104.06468 (2022)

  7. Cheng, X., Zhang, L., Zheng, Y.: Deep similarity learning for multimodal medical images. Comput. Methods Biomech. Biomed. Eng. Imag. Visualiz. 6(3), 248–252 (2018)

    Article  Google Scholar 

  8. Christensen, G., Rabbitt, R., Miller, M.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  9. Cohen, L.D.: Auxiliary variables and two-step iterative algorithms in computer vision problems. J. Math. Imaging Vision 6(1), 59–83 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferrante, E., Dokania, P.K., Silva, R.M., Paragios, N.: Weakly supervised learning of metric aggregations for deformable image registration. IEEE J. Biomed. Health Inform. 23(4), 1374–1384 (2019)

    Article  Google Scholar 

  11. Fischer, B., Modersitzki, J.: A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra Appl. 380, 107–124 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fu, Y., Lei, Y., Wang, T., Curran, W.J., Liu, T., Yang, X.: Deep learning in medical image registration: a review. Phys. Med. Biol. 65(20), 20TR01 (2020)

    Google Scholar 

  13. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. 4(7), 932–946 (1995)

    Article  Google Scholar 

  14. Haskins, G., et al.: Learning deep similarity metric for 3D MR-TRUS image registration. Int. J. Comput. Assist. Radiol. Surg. 14(3), 417–425 (2019)

    Google Scholar 

  15. Hering, A., et al.: Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning. IEEE Trans. Med. Imaging 1 (2022)

    Google Scholar 

  16. Hu, Y., et al.: Adversarial deformation regularization for training image registration neural networks. In: Frangi, A.F., et al. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 774–782. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_87

  17. Hu, Y., et al.: Weakly-supervised convolutional neural networks for multimodal image registration. Med. Image Anal. 49, 1–13 (2018)

    Google Scholar 

  18. Ji, Y., et al.: Amos: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation. Adv. Neural. Inf. Process. Syst. 35, 36722–36732 (2022)

    Google Scholar 

  19. Kim, B., Kim, D.H., Park, S.H., Kim, J., Lee, J.G., Ye, J.C.: CycleMorph: cycle consistent unsupervised deformable image registration. Med. Image Anal. 71, 102036 (2021)

    Article  Google Scholar 

  20. Modersitzki, J.: Numerical methods for image registration. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2003)

    Google Scholar 

  21. Mok, T.C.W., Chung, A.C.S.: Fast symmetric diffeomorphic image registration with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4644–4653 (2020)

    Google Scholar 

  22. Pace, D.F., Aylward, S.R., Niethammer, M.: A locally adaptive regularization based on anisotropic diffusion for deformable image registration of sliding organs. IEEE Trans. Med. Imaging 32(11), 2114–2126 (2013)

    Article  Google Scholar 

  23. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS 2017 Workshop Autodiff (2017). https://openreview.net/forum?id=BJJsrmfCZ

  24. Qin, C., Wang, S., Chen, C., Qiu, H., Bai, W., Rueckert, D.: Biomechanics-informed neural networks for myocardial motion tracking in MRI. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 296–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_29

  25. Schmidt-Richberg, A., Werner, R., Handels, H., Ehrhardt, J.: Estimation of slipping organ motion by registration with direction-dependent regularization. Med. Image Anal. 16, 150–159 (2012)

    Article  Google Scholar 

  26. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Article  Google Scholar 

  27. Wang, J., Zhang, M.: DeepFLASH: an efficient network for learning-based medical image registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4444–4452 (2020)

    Google Scholar 

  28. Weickert, J., Romeny, B., Viergever, M.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998)

    Article  Google Scholar 

  29. Werner, R., Schmidt-Richberg, A., Handels, H., Ehrhardt, J.: Estimation of lung motion fields in 4D CT data by variational non-linear intensity-based registration: a comparison and evaluation study. Phys. Med. Biol. 59(15), 4247–4260 (2014)

    Article  Google Scholar 

  30. Xu, Z., et al.: Double-uncertainty guided spatial and temporal consistency regularization weighting for learning-based abdominal registration. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022, LNCS, pp. 14–24. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Ehrhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ehrhardt, J., Handels, H. (2024). Implicitly Solved Regularization for Learning-Based Image Registration. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics