Skip to main content

I Can’t Believe It’s Not Better: In-air Movement for Alzheimer Handwriting Synthetic Generation

  • Conference paper
  • First Online:
Graphonomics in Human Body Movement. Bridging Research and Practice from Motor Control to Handwriting Analysis and Recognition (IGS 2023)

Abstract

During recent years, there here has been a boom in terms of deep learning use for handwriting analysis and recognition. One main application for handwriting analysis is early detection and diagnosis in the health field. Unfortunately, most real case problems still suffer a scarcity of data, which makes difficult the use of deep learning-based models. To alleviate this problem, some works resort to synthetic data generation. Lately, more works are directed towards guided data synthetic generation, a generation that uses the domain and data knowledge to generate realistic data that can be useful to train deep learning models. In this work, we combine the domain knowledge about the Alzheimer’s disease for handwriting and use it for a more guided data generation. Concretely, we have explored the use of in-air movements for synthetic data generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gal, M., Lynskey, O.: Synthetic data: legal implications of the data-generation revolution. 2023 109 (2023)

    Google Scholar 

  2. Bansal, M.A., Sharma, D.R., Kathuria, D.M.: A systematic review on data scarcity problem in deep learning: solution and applications. ACM Comput. Surv. 54(10s), 1–29 (2022)

    Article  Google Scholar 

  3. De Paula, V.J., Radanovic, M., Diniz, B., Forlenza, O.: Alzheimer’s disease. Sub-Cell. Biochem. 65, 352 (2012)

    Google Scholar 

  4. Breijyeh, Z., Karaman, R.: Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25, 5789 (2020)

    Article  Google Scholar 

  5. Porsteinsson, A.P., Isaacson, R., Knox, S.A., Sabbagh, M.N., Rubino, I.: Diagnosis of early Alzheimer’s disease: clinical practice in 2021. J. Prev. Alzheimer’s Dis. 8, 371–386 (2021)

    Google Scholar 

  6. Wells, C., Horton, J.: An overview of new and emerging technologies for early diagnosis of Alzheimer disease. Can. J. Health Technol. 2(5) (2022)

    Google Scholar 

  7. Bature, F., Pappas, Y., Pang, D., Guinn, B.: Can non-invasive biomarkers lead to an earlier diagnosis of Alzheimer’s disease? Curr. Alzheimer Res. 18, 12 (2021)

    Article  Google Scholar 

  8. Margarete, D., Zamarian, L., Djamshidian, A.: Handwriting in Alzheimer’s disease. J. Alzheimer’s Dis. 82, 1–9 (2021)

    Google Scholar 

  9. Devi, A., Kavya, G.: Dysgraphia disorder forecasting and classification technique using intelligent deep learning approaches. Prog. Neuropsychopharmacol. Biol. Psychiatry 120, 110647 (2023)

    Article  Google Scholar 

  10. Impedovo, D., Pirlo, G.: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective. IEEE Rev. Biomed. Eng. 12, 209–220 (2019)

    Article  Google Scholar 

  11. Fairhurst, M., Hoque, S., Razian, M.A.: Improved screening of developmental dyspraxia using on-line image analysis. In: Proceedings of the 8th World Multi-Conference on Systemics, Cybernetics and Informatics (SCI2004), vol. 1, pp. 160–165. International Institute of Informatics and Systemics (2004)

    Google Scholar 

  12. Glenat, S., Heutte, L., Paquet, T., Mellier, D.: Computer-based diagnosis of dyspraxia: the MEDDRAW project. In: 12th Conference of the International Graphonomics Society, IGS (2005)

    Google Scholar 

  13. Onofri, E., et al.: Dysgraphia in relation to cognitive performance in patients with Alzheimer’s disease (2013)

    Google Scholar 

  14. De Stefano, C., Fontanella, F., Impedovo, D., Pirlo, G., di Freca, A.S.: Handwriting analysis to support neurodegenerative diseases diagnosis: a review. Pattern Recognit. Lett. 121, 37–45 (2019)

    Article  Google Scholar 

  15. Ishikawa, T., et al.: Handwriting features of multiple drawing tests for early detection of Alzheimer’s disease: a preliminary result. In: MedInfo, pp. 168–172 (2019)

    Google Scholar 

  16. van Galen, G.P., Portier, S.J., Smits-Engelsman, B.C.M., Schomaker, L.R.B.: Neuromotor noise and poor handwriting in children. Acta Physiol. (Oxf) 82(1), 161–178 (1993)

    Google Scholar 

  17. Werner, P., Rosenblum, S., Bar-On, G., Heinik, J., Korczyn, A.: Handwriting process variables discriminating mild Alzheimer’s disease and mild cognitive impairment. J. Gerontol. Ser. B 61(4), P228–P236 (2006)

    Article  Google Scholar 

  18. van Galen, G.P., Teulings, H.-L.: The independent monitoring of form and scale factors in handwriting. Acta Physiol. 54(1), 9–22 (1983)

    Google Scholar 

  19. Bellgrove, M.A., Phillips, J.G., Bradshaw, J.L., Hall, K.A., Presnell, I., Hecht, H.: Response programming in dementia of the Alzheimer type: a kinematic analysis. Neuropsychologia 35(3), 229–240 (1997)

    Article  Google Scholar 

  20. Gordon, B., Carson, K.: The basis for choice reaction time slowing in Alzheimer’s disease. Brain Cogn. 13(2), 148–166 (1990)

    Article  Google Scholar 

  21. Johnson, D., Morris, J., Galvin, J.: Verbal and visuospatial deficits in dementia with lewy bodies. Neurology 65, 1232–1238 (2005)

    Article  Google Scholar 

  22. Weintraub, S., Wicklund, A.H., Salmon, D.P.: The neuropsychological profile of Alzheimer disease. Cold Spring Harbor Perspect. Med. 2(4), a006171 (2012)

    Article  Google Scholar 

  23. Thomas, M., Lenka, A., Kumar Pal, P.: Handwriting analysis in Parkinson’s disease: current status and future directions. Mov. Disord. Clin. Pract. 4(6), 806–818 (2017)

    Google Scholar 

  24. Pérez Pelegrí, M.: Applications of Deep Leaning on Cardiac MRI: Design Approaches for a Computer Aided Diagnosis – riunet.upv.es. https://riunet.upv.es/handle/10251/192988. Accessed 21 June 2023

  25. Legrand, A.P., et al.: New insight in spiral drawing analysis methods - application to action tremor quantification. Clin. Neurophysiol. 128(10), 1823–1834 (2017)

    Article  Google Scholar 

  26. Müller, T., Kuhn, W.: Complex motion series performance differs between previously untreated patients with Parkinson’s disease and controls. J. Neural Transm. 129, 595–600 (2022)

    Article  Google Scholar 

  27. Cilia, N.D., De Gregorio, G., De Stefano, C., Fontanella, F., Marcelli, A., Parziale, A.: Diagnosing Alzheimer’s disease from on-line handwriting: a novel dataset and performance benchmarking. Eng. Appl. Artif. Intell. 111, 104822 (2022)

    Article  Google Scholar 

  28. Broeder, S., Nackaerts, E., Nieuwboer, A., Smits-Engelsman, B., Swinnen, S., Heremans, E.: The effects of dual tasking on handwriting in patients with Parkinson’s disease. Neuroscience 263, 193–202 (2014)

    Article  Google Scholar 

  29. Garre-Olmo, J., Faúndez-Zanuy, M., López-de Ipiña, K., Calvó-Perxas, L., Turró-Garriga, O.: Kinematic and pressure features of handwriting and drawing: preliminary results between patients with mild cognitive impairment, Alzheimer disease and healthy controls. Curr. Alzheimer Res. 14(9), 960–968 (2017)

    Google Scholar 

  30. Fröhlich, H., et al.: Leveraging the potential of digital technology for better individualized treatment of Parkinson’s disease. Front. Neurol. 13, 788427 (2022)

    Article  Google Scholar 

  31. Dao, Q., El-Yacoubi, M.A., Rigaud, A.-S.: Detection of Alzheimer disease on online handwriting using 1d convolutional neural network. IEEE Access 11, 2148–2155 (2023)

    Article  Google Scholar 

  32. Dzotsenidze, E., Valla, E., Nõmm, S., Medijainen, K., Taba, P., Toomela, A.: Generative adversarial networks as a data augmentation tool for CNN-based Parkinson’s disease diagnostics. IFAC-PapersOnLine 55(29), 108–113 (2022)

    Article  Google Scholar 

  33. Gemito, G., Marcelli, A., Parziale, A.: Generation of synthetic drawing samples to diagnose Parkinson’s disease. In: Carmona-Duarte, C., Diaz, M., Ferrer, M.A., Morales, A. (eds.) IGS 2022. LNCS, vol. 13424, pp. 269–284. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19745-1_20

    Chapter  Google Scholar 

  34. Graves, A.: Generating sequences with recurrent neural networks. CoRR, abs/1308.0850 (2013)

    Google Scholar 

  35. Pereira, C.R., et al.: A new computer vision-based approach to aid the diagnosis of Parkinson’s disease. Comput. Methods Programs Biomed. 136, 79–88 (2016)

    Article  Google Scholar 

  36. Fontanella, F.: DARWIN. UCI Machine Learning Repository (2022). https://doi.org/10.24432/C55D0K

  37. Impedovo, D., Pirlo, G., Barbuzzi, D., Balestrucci, A., Impedovo, S.: Handwritten processing for pre diagnosis of Alzheimer disease. In: Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014), pp. 193–199. INSTICC, SciTePress (2014)

    Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the Spanish project PID2021-126808OB-I00 (GRAIL) and the FI fellowship AGAUR 2020 FI-SDUR 00497 (with the support of the Secretaria d’Universitats i Recerca of the Generalitat de Catalunya and the Fons Social Europeu). The authors acknowledge the support of the Generalitat de Catalunya CERCA Program to CVC’s general activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Bensalah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bensalah, A., Parziale, A., De Gregorio, G., Marcelli, A., Fornés, A., Lladós, J. (2023). I Can’t Believe It’s Not Better: In-air Movement for Alzheimer Handwriting Synthetic Generation. In: Parziale, A., Diaz, M., Melo, F. (eds) Graphonomics in Human Body Movement. Bridging Research and Practice from Motor Control to Handwriting Analysis and Recognition. IGS 2023. Lecture Notes in Computer Science, vol 14285. Springer, Cham. https://doi.org/10.1007/978-3-031-45461-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45461-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45460-8

  • Online ISBN: 978-3-031-45461-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics