Skip to main content

Wound Measurement

  • Chapter
  • First Online:
Pearls and Pitfalls in Skin Ulcer Management

Abstract

Wound measurement is important in monitoring the healing process of chronic wounds and in evaluating the effect of treatment. Several tools are available to support the caregivers in absence of consensus on which tools should be used to implement wound care. The tools should be easy to use by practitioners; at the same time, the measurements acquired should be accurate and reliable and user friendly. The research is increasingly focusing on methods that allow wound analysis and provide reproducible quantitative indications through devices that integrate multiple imaging methods leading to multiparametric analysis of the lesions. Instrument miniaturization and portability are a key point in wound imaging research. These new techniques have many potential major advantages such as: standardization of wound measurements, objective data to evaluate therapeutic procedures and protocols, and sequential comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dowsett C, Protz K, Drouard M, et al. Triangle of wound assessment. London: Wounds International; 2015. https://bit.ly/2L0Td8a.

    Google Scholar 

  2. Blasco GS. Implementing the triangle of wound assessment framework to transform the care pathway for diabetic foot ulcers. J Wound Care. 2020;29(6):363–9.

    Article  Google Scholar 

  3. Falanga V. Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair Regen. 2000;8(5):347–52.

    Article  CAS  PubMed  Google Scholar 

  4. Dowsett C, Gronemann M, Harding K, et al. Taking wound assessment tools and nurse’s needs: an evaluation study. Int Wound J. 2013;6(1):19–23.

    Google Scholar 

  5. Flanagan M. Wound measurement: can it help us to monitor progression to healing? J Wound Care. 2003;12:189–94.

    Article  CAS  PubMed  Google Scholar 

  6. Shaw J, Bell PM. Wound measurement in diabetic foot ulceration. In: Global perspective on diabetic foot ulcerations. London: Intech Open; 2011. Janeza Trdine 9, 51000 Rijeka, Croatia: Dinh T.

    Google Scholar 

  7. Shetty R, Sreekar H, Lamba S, et al. A novel and accurate technique of photographic wound measurement. Indian J Plast Surg. 2012;45:425–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rogers LC, Bevilacqua NJ, Armstrong, et al. Digital planimetry results in more accurate wound measurements: a comparison to standard ruler measurements. J Diabetes Sci Technol. 2010;4:799–802.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kantor J, Margolis DJ. Efficacy and prognostic value of simple wound measurements. Arch Dermatol. 1998;134:1571–4.

    Article  CAS  PubMed  Google Scholar 

  10. Mayrovitz HN, Smith J, Ingram C, et al. Shape and area measurement considerations for diabetic neuropathic plantar ulcers. Ostomy Wound Manage. 1997;43(58–62):4–5.

    Google Scholar 

  11. Wunderlich RP, Peters EJ, Armstrong DG, et al. Reliability of digital videometry and acetate tracing in measuring the surface area of cutaneous wounds. Diabetes Res Clin Pract. 2000;49:87–92.

    Article  CAS  PubMed  Google Scholar 

  12. Langemo DK, Melland H, Hanson D, et al. Two-dimensional wound measurement: comparison of 4 techniques. Adv Wound Care. 1998;11:337–43.

    CAS  PubMed  Google Scholar 

  13. Hammond CE, Nixon MA. The reliability of a handheld wound measurement and documentation device in clinical practice. J Wound Ostomy Continence Nurs. 2011;38:260–4.

    Article  PubMed  Google Scholar 

  14. Miller C, Karimi L, Donohue L, et al. Interrater and intrarater reliability of silhouette wound imaging device. Adv Skin Wound Care. 2012;25:513–8.

    Article  PubMed  Google Scholar 

  15. Thawer HA, Houghton PE, Woodbury MG, Keast D, Campbell K. A comparison of computer-assisted and manual wound size measurement. Ostomy Wound Manage. 2002;48:46–53.

    PubMed  Google Scholar 

  16. Treuillet S, Albouy B, Lucas Y. Three-dimensional assessment of skin wounds using a standard digital camera. IEEE Trans Med Imaging. 2009;28(5):752–62.

    Article  PubMed  Google Scholar 

  17. Queen D, Harding K. Is wound photography becoming sloppy? Int Wound J. 2020;17(1):5–6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jones TD, Plassmann P. An active contour model for measuring the area of leg ulcers. IEEE Trans Med Imaging. 2000;19(12):1202–10.

    Article  CAS  PubMed  Google Scholar 

  19. Foltynski P, Ladyzynski P, Sabalinska S, et al. Accuracy and precision of selected wound area measurement methods in diabetic foot ulceration. Diabetes Technol Ther. 2013;15(8):712–21.

    Article  PubMed  Google Scholar 

  20. Wannous H, Lucas Y, Treuillet S. Enhanced assessment of the wound-healing process by accurate multiview tissue classification. IEEE Trans Med Imaging. 2011;30(2):315–26.

    Article  PubMed  Google Scholar 

  21. Thawer HA, Houghton PE, Woodbury MG, et al. A comparison of computer-assisted and manual wound size measurement. Ostomy Wound Manage. 2002;48:46–53.

    PubMed  Google Scholar 

  22. Chang AC, Dearman B, Greenwood JE. A comparison of wound area measurement techniques: visitrak versus photography. Eplasty. 2011;11:e18.

    PubMed  PubMed Central  Google Scholar 

  23. Barone S, Paoli A, Razionale AV. Assessment of chronic wounds by three-dimensional optical imaging based on integrating geometrical, chromatic, and thermal data. Proc Inst Mech Eng H. 2011;225:181–93.

    Article  CAS  PubMed  Google Scholar 

  24. Davis AJ, Nishimura J, Seton J, et al. Repeatability and clinical utility in stereophotogrammetric measurements of wounds. J Wound Care. 2013;22:90–2.

    Article  CAS  PubMed  Google Scholar 

  25. Callieri M, Cignoni P, Coluccia M, et al. Derma: monitoring the evolution of skin lesions with a 3D system. In: Proceedings of the 8th international workshop on vision, modeling and visualization, 2003 Nov 19–21; Munich; 2003. p. 167–74.

    Google Scholar 

  26. Romanelli M, Dini V, Bianchi T, et al. Wound assessment by 3-dimensional laser scanning. Arch Dermatol. 2007;143:1333–4.

    Article  PubMed  Google Scholar 

  27. Davis KE, Constantine FC, Macaslan EC, Bills JD, Noble DL, Lavery LA. Validation of a laser-assisted wound measurement device for measuring wound volume. J Diabetes Sci Technol. 2013;7:1161–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kecelj-Leskovec N, Jezersek M, Mozina J, Pavlovic MD, Lunder T. Measurement of venous leg ulcers with a laser-based three-dimensional method: comparison to computer planimetry with photography. Wound Repair Regen. 2007;15:767–71.

    Article  PubMed  Google Scholar 

  29. Khaodhiar L, Dinh T, Schomacker KT, et al. The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes. Diabetes Care. 2007;30(4):903–10.

    Article  PubMed  Google Scholar 

  30. Daeschlein G, Langner I, Wild T, et al. Hyperspectral imaging as a novel diagnostic tool in microcirculation of wounds. Clin Hemorheol Microcirc. 2017;67(3–4):467–74.

    Article  CAS  PubMed  Google Scholar 

  31. Xu RX, Allen DW, Huang J, et al. Developing digital tissue phantoms for hyperspectral imaging of ischemic wounds. Biomed Opt Express. 2012;3(6):1433–45.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sen CK, Ghatak S, Gnyawali S, et al. Cutaneous imaging technologies in acute burn and chronic wound care. Plast Reconstr Surg. 2016;138(3 Suppl):119S–28S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Droog EJ, Steenbergen W, Sjöberg F. Measurement of depth of burns by laser Doppler perfusion imaging. Burns. 2001;27(6):561–8.

    Article  CAS  PubMed  Google Scholar 

  34. Renkielska A, Nowakowski A, Kaczmarek M, et al. Burn depths evaluation based on active dynamic IR thermal imaging—a preliminary study. Burns. 2006;32(7):867–75.

    Article  PubMed  Google Scholar 

  35. Roback K. An overview of temperature monitoring devices for early detection of diabetic foot disorders. Expert Rev Med Devices. 2010;7(5):711–8.

    Article  PubMed  Google Scholar 

  36. Benbow SJ, Chan AW, Bowsher DR, et al. The prediction of diabetic neuropathic plantar foot ulceration by liquid-crystal contact thermography. Diabetes Care. 1994;17(8):835–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lawson RN, Wlodek GD, Webster DR. Thermographic assessment of burns and frostbite. Can Med Assoc J. 1961;84(20):1129–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bharara M, Schoess J, Armstrong DG. Coming events cast their shadows before: detecting inflammation in the acute diabetic foot and the foot in remission. Diabetes Metab Res Rev. 2012;28(Suppl 1):15–20.

    Article  PubMed  Google Scholar 

  39. McGill DJ, Sørensen K, MacKay IR, et al. Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy. Burns. 2007;33(7):833–42.

    Article  CAS  PubMed  Google Scholar 

  40. Srinivas SM, de Boer JF, Park H, et al. Determination of burn depth by polarization-sensitive optical coherence tomography. J Biomed Opt. 2004;9(1):207–12.

    Article  PubMed  Google Scholar 

  41. Deka G, Wu WW, Kao FJ. In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging. J Biomed Opt. 2013;18(6):061222.

    Article  PubMed  Google Scholar 

  42. Janowska A, Davini G, Romanelli M, et al. The association between pH and fluorescence as noninvasive diagnostic tools in chronic wounds. Int J Low Extrem Wounds. 2021;22:454.

    Article  PubMed  Google Scholar 

  43. Le L, Baer M, Briggs P, et al. Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial. Adv Wound Care (New Rochelle). 2021;10(3):123–36.

    Article  PubMed  Google Scholar 

  44. Price N. Routine fluorescence imaging to detect wound bacteria reduces antibiotic use and antimicrobial dressing expenditure while improving healing rates: retrospective analysis of 229-foot ulcers. Diagnostics (Basel). 2020;10(11):927.

    Article  PubMed  Google Scholar 

  45. Izzetti R, Vitali S, Aringhieri G, et al. Ultra-high frequency ultrasound, a promising diagnostic technique: review of the literature and single-center experience. Can Assoc Radiol J. 2021;72(3):418–31.

    Article  PubMed  Google Scholar 

  46. Kirsner RS, Vivas AC. Lower-extremity ulcers: diagnosis and management. Br J Dermatol. 2015;173(2):379–90.

    Article  CAS  PubMed  Google Scholar 

  47. Flanagan M. Improving accuracy of wound measurement in clinical practice. Ostomy Wound Manage. 2003;49:28.

    PubMed  Google Scholar 

  48. Mani R, Margolis DJ, Shukla V, et al. Optimizing technology use for chronic lower-extremity wound healing: a consensus document. Int J Low Extrem Wounds. 2016;15(2):102–9.

    Article  PubMed  Google Scholar 

  49. Van den Kerckhove E, Staes F, Flour M, et al. Reproducibility of repeated measurements on post-burn scars with Dermascan C. Skin Res Technol. 2003;9(1):81–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dini, V., Granieri, G. (2023). Wound Measurement. In: Maruccia, M., Papa, G., Ricci, E., Giudice, G. (eds) Pearls and Pitfalls in Skin Ulcer Management. Springer, Cham. https://doi.org/10.1007/978-3-031-45453-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45453-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45452-3

  • Online ISBN: 978-3-031-45453-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics