Skip to main content

Mesenchymal Cells from Adipose Tissue

  • Chapter
  • First Online:
Pearls and Pitfalls in Skin Ulcer Management

Abstract

Adipose-derived stem cells are autologous mesenchymal stem cells first identified by Zuk et al. in 2001 from processed lipoaspirates; ADSCs meet the minimum criteria proposed by the International Society for Cellular Therapy (ISCT) in 2006, with specific immunophenotypic characteristics. These cells possess paracrine activity, being able to secrete various growth factors such as b-FGF (basic fibroblast growth factor), VEGF (vascular endothelial growth factor), IGF-1 (insulin-like growth factor 1), HGF (hepatocyte growth factor), and TGF-b1 (transforming growth factor beta 1) and are also able to release cytokines (IL-6, IL-7, IL-8, IL-11 TNF-a), the factors G-CSF and M-CSF (granulocyte and macrophage colony-stimulating factors), adipokines, in response to inflammatory stimuli. ADSCs are capable of differentiating into multiple cell lines, both mesodermal (adipogenic differentiation, chondrogenic differentiation, osteogenic differentiation, myogenic differentiation and non-mesodermal (neuronal differentiation, hepatocyte differentiation, pancreatic differentiation, endothelial differentiation, epithelial differentiation, hematopoietic differentiation), thus playing an important role in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  2. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells-Current trends and future prospective. Biosci Rep. 2015;35:e00191.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gimble JM. Adipose tissue-derived therapeutics. Expert Opin Biol Ther. 2003;3:705–13.

    Article  CAS  PubMed  Google Scholar 

  4. Zuk PA, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article  CAS  PubMed  Google Scholar 

  5. Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother. 2016;43:268–74.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Traktuev DO, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102:77–85.

    Article  CAS  PubMed  Google Scholar 

  7. Maumus M, et al. Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes. 2011;35:1141–53.

    Article  CAS  Google Scholar 

  8. Lin CS, et al. Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol. 2010;25:807–15.

    PubMed  Google Scholar 

  9. Bourin P, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the international so. Cytotherapy. 2013;15:641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Suga H, et al. Functional implications of CD34 expression in human adipose- derived stem/progenitor cells. Stem Cells Dev. 2009;18:1201–10.

    Article  CAS  PubMed  Google Scholar 

  11. Lin G, et al. Identification of active and quiescent adipose vascular stromal cells. Cytotherapy. 2012;14:240–6.

    Article  CAS  PubMed  Google Scholar 

  12. Baer PC. Adipose-derived mesenchymal stromal/stem cells: an update on their phenotype in vivo and in vitro. World J Stem Cells. 2014;6:256–65.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li H, et al. Adipogenic potential of adipose stem cell subpopulations. Plast Reconstr Surg. 2011;128:663–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsuji W, Rubin JP, Marra KG. Adipose-derived stem cells: implications in tissue regeneration. World J Stem Cells. 2014;6:312–21.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Braga Osorio Gomes Salgado AJ, et al. Adipose tissue derived stem cells secretome: soluble factors and their roles in Regenerative medicine. Curr Stem Cell Res Ther. 2010;5:103–10.

    Article  Google Scholar 

  16. Puissant B, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129:118–29.

    Article  PubMed  Google Scholar 

  17. Gonzalez-Rey E, et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis. 2010;69:241–8.

    Article  CAS  PubMed  Google Scholar 

  18. Zuk PA, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25:818–27.

    Article  PubMed  Google Scholar 

  20. Noël D, et al. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res. 2008;314:1575–84.

    Article  PubMed  Google Scholar 

  21. Brayfield C, Marra K, Rubin JP. Adipose stem cells for soft tissue regeneration. Handchirurgie Mikrochirurgie Plast Chir. 2010;42:124–8.

    Article  CAS  Google Scholar 

  22. Philips BJ, Marra KG, Rubin JP. Adipose stem cell-based soft tissue regeneration. Expert Opin Biol Ther. 2012;12:155–63.

    Article  CAS  PubMed  Google Scholar 

  23. Wei Y, Sun X, Wang W, Hu Y. Adipose-derived stem cells and chondrogenesis. Cytotherapy. 2007;9:712–6.

    Article  CAS  PubMed  Google Scholar 

  24. Chen M, et al. Biochemical stimulus-based strategies for meniscus tissue engineering and regeneration. Biomed Res Int. 2018;2018:1.

    Google Scholar 

  25. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 2004;25:3211–22.

    Article  CAS  PubMed  Google Scholar 

  26. Nathan S, et al. Cell-based therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng. 2003;9:733–44.

    Article  CAS  PubMed  Google Scholar 

  27. Latief N, et al. Adipose stem cells differentiated chondrocytes regenerate damaged cartilage in rat model of osteoarthritis. Cell Biol Int. 2016;40:579–88.

    Article  CAS  PubMed  Google Scholar 

  28. Halvorsen YDC, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng. 2001;7:729–41.

    Article  CAS  PubMed  Google Scholar 

  29. Zanetti AS, Sabliov C, Gimble JM, Hayes DJ. Human adipose-derived stem cells and three-dimensional scaffold constructs: a review of the biomaterials and models currently used for bone regeneration. J Biomed Mater Res B Appl Biomater. 2013;101:187–99.

    Article  PubMed  Google Scholar 

  30. Lendeckel S, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Cranio-Maxillofac Surg. 2004;32:370–3.

    Article  Google Scholar 

  31. Zhang HN, Li L, Leng P, Wang YZ, Lü CY. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage. Chin J Traumatol. 2009;12:92–7.

    PubMed  Google Scholar 

  32. Mizuno H, et al. Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg. 2002;109:199–209.

    Article  PubMed  Google Scholar 

  33. Jeon ES, et al. Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like through a TGF-β-dependent mechanism. J Cell Sci. 2006;119:4994–5005.

    Article  CAS  PubMed  Google Scholar 

  34. Di Rocco G, et al. Myogenic potential of adipose-tissue-derived cells. J Cell Sci. 2006;119:2945–52.

    Article  PubMed  Google Scholar 

  35. Jack GS, et al. Processed lipoaspirate cells for tissue engineering of the lower urinary tract: implications for the treatment of stress urinary incontinence and bladder reconstruction. J Urol. 2005;174:2041–5.

    Article  CAS  PubMed  Google Scholar 

  36. Rangappa S, Fen C, Lee EH, Bongso A, Wei ESK. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg. 2003;75:775–9.

    Article  PubMed  Google Scholar 

  37. Athier W, Türktaş Z, Duckers HJ. Adipose-derived stem cells. In: Stem cell and gene therapy for cardiovascular disease. Cambridge, MA: Academic; 2015. p. 119–35. https://doi.org/10.1016/B978-0-12-801888-0.00010-2.

    Chapter  Google Scholar 

  38. Van Dijk A, et al. Accumulation of fibronectin in the heart after myocardial infarction: a putative stimulator of adhesion and proliferation of adipose- derived stem cells. Cell Tissue Res. 2008;332:289–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Radtke C, Schmitz B, Spies M, Kocsis JD, Vogt PM. Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int J Dev Neurosci. 2009;27:817–23.

    Article  CAS  PubMed  Google Scholar 

  40. Ashjian PH, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg. 2003;111:1922–31.

    Article  PubMed  Google Scholar 

  41. Di Summa PG, et al. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthetic Surg. 2010;63:1544–52.

    Article  Google Scholar 

  42. Ryu HH, et al. Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. J Vet Sci. 2009;10:273–84.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gutiérrez-Fernández M, et al. Adipose tissue-derived mesenchymal stem cells as a strategy to improve recovery after stroke. Expert Opin Biol Ther. 2015;15:873–81.

    Article  PubMed  Google Scholar 

  44. Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun. 2005;328:258–64.

    Article  CAS  PubMed  Google Scholar 

  45. Liang L, et al. Therapeutic potential and related signal pathway of adipose-derived stem cell transplantation for rat liver injury. Hepatol Res. 2009;39:822–32.

    Article  CAS  PubMed  Google Scholar 

  46. Timper K, et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 2006;341:1135–40.

    Article  CAS  PubMed  Google Scholar 

  47. Kajiyama H, et al. Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int J Dev Biol. 2010;54:699–705.

    Article  CAS  PubMed  Google Scholar 

  48. Cao Y, et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun. 2005;332:370–9.

    Article  CAS  PubMed  Google Scholar 

  49. Rehman J, et al. Secretion of Angiogenic and Antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109:1292–8.

    Article  PubMed  Google Scholar 

  50. Lee HC, et al. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J. 2012;76:1750–60.

    Article  CAS  PubMed  Google Scholar 

  51. Baer PC. Adipose-derived stem cells and their potential to differentiate into the epithelial lineage. Stem Cells Dev. 2011;20:1805–16.

    Article  CAS  PubMed  Google Scholar 

  52. Li K, Han Q, Yan X, Liao L, Zhao RC. Not a process of simple vicariousness, the differentiation of human adipose-derived mesenchymal stem cells to renal tubular epithelial cells plays an important role in acute kidney injury repairing. Stem Cells Dev. 2010;19:1267–75.

    Article  CAS  PubMed  Google Scholar 

  53. Nie C, et al. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant. 2011;20:205–16.

    Article  PubMed  Google Scholar 

  54. Cousin B, André M, Arnaud E, Pénicaud L, Casteilla L. Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochem Biophys Res Commun. 2003;301:1016–22.

    Article  CAS  PubMed  Google Scholar 

  55. Corre J, et al. Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors. J Cell Physiol. 2006;208:282–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Persichetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Persichetti, P., Marangi, G.F., Mirra, C., Gratteri, M., Arcari, L. (2023). Mesenchymal Cells from Adipose Tissue. In: Maruccia, M., Papa, G., Ricci, E., Giudice, G. (eds) Pearls and Pitfalls in Skin Ulcer Management. Springer, Cham. https://doi.org/10.1007/978-3-031-45453-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45453-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45452-3

  • Online ISBN: 978-3-031-45453-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics