Skip to main content

Bioinductive Dressing

  • Chapter
  • First Online:
Pearls and Pitfalls in Skin Ulcer Management

Abstract

Bioactive dressings are defined as natural or synthetic materials that can directly or indirectly interfere with the reparative process. These materials include alginates, collagens, hydrocolloids, biotextiles, chitosan, chitin, and their derivatives. Interactive dressings can be used as a substrate for bioactive agents allowing for increasingly targeted action that takes into consideration the condition of the ulcer and the unique needs for restoration of skin integrity. This chapter will analyze various molecules and their action, along with the most common types of bioactive and drug-loaded dressings with their activity, uses, advantages, and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schoukens G. Bioactive dressings to promote wound healing. Sawston: Woodhead Publishing; 2019.

    Book  Google Scholar 

  2. Alven S, Peter S, Mbese Z, Aderibigbe BA. Polymer-based wound dressing materials loaded with bioactive agents: potential materials for the treatment of diabetic wounds. Polymers. 2022;14:724. https://doi.org/10.3390/polym14040724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Laurano R, Boffito M, Ciardelli G, Chiono V. Wound dressing products: a translational investigation from the bench to the market. Eng Regen. 2022;3:182–200.

    Google Scholar 

  4. Reilly DM, Lozano J. Skin collagen through the life stages: importance for skin health and beauty. Plast Aesthetic Res. 2021;8:2.

    Article  Google Scholar 

  5. Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3:a004978.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mathew-Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering. 2021;8:63. https://doi.org/10.3390/bioengineering8050063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Onursal C, Dick E, Angelidis I, Schiller HB, Staab-Weijnitz CA. Collagen biosynthesis, processing, and maturation in lung ageing. Front Med. 2021;8:593874. https://doi.org/10.3389/fmed.2021.593874.

    Article  Google Scholar 

  8. Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, et al. The collagen Suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater. 2019;31:1801651.

    Article  Google Scholar 

  9. Taguchi T, Razzaque MS. The collagen-specific molecular chaperone HSP47: is there a role in fibrosis? Trends Mol Med. 2007;13(2):45–53.

    Article  CAS  PubMed  Google Scholar 

  10. San Antonio JD, Jacenko O, Fertala A, Orgel J. Collagen structure-function mapping informs applications for regenerative medicine. Bioengineering. 2020;8:3.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Govindaraju P, Todd L, Shetye S, Monslow J, Puré E. CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biol. 2019;75–76:314–30.

    Article  PubMed  Google Scholar 

  12. Pallaske F, Pallaske A, Herklotz K, Boese-Landgraf J. The significance of collagen dressings in wound management: a review. J Wound Care. 2018;27(10):692–702.

    Article  PubMed  Google Scholar 

  13. Amirrah IN, Farhanulhakim M, Razip M, Tabata Y, Bt R, Idrus H, Nordin A, Fauzi MB. Antibacterial-integrated collagen Wound dressing for diabetes-related foot ulcers: an evidence-based review of clinical studies. Polymers. 2020;12:2168.

    Article  CAS  Google Scholar 

  14. Gaspar-pintiliescu A, Stanciuc A, Craciunescu O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: a review. Int J Biol Macromol. 2019;138:854–65.

    Article  CAS  PubMed  Google Scholar 

  15. Furlan D, Bonfanti G, Scappaticci G. Non-porous collagen sheet for therapeutic use, and the method and apparatus for preparing it. US Patent. #5785983. 1993.

    Google Scholar 

  16. Wahab N, Roman M, Chakravarthy D, Luttrell T. The use of a pure native collagen dressing for wound bed preparation prior to use of a living bi-layered skin substitute. J Am Coll Clin Wound Spec. 2015;6:2–8.

    PubMed  PubMed Central  Google Scholar 

  17. Elgharably H, Roy S, Khanna S, Abas M, DasGhatak P, Das A, Mohammed K, Sen CK. A modified collagen gel enhances healing outcome in a preclinical swine model of excisional wounds. Wound Repair Regen. 2013;21:473–81.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Watt PW, Harvey W, Wiseman D, Light N, Saferstein L, Cini J. Wound dressing materials comprising collagen and oxidized cellulose. European Patent. EP 1325754 B1.

    Google Scholar 

  19. DiTizio V, DiCosmo F, Xiao Y. Non-adhesive elastic gelatin matrices. US Patent. US 8,628,800 B2. 2014.

    Google Scholar 

  20. Mbese Z, Alven S, Aderibigbe BA. Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers. 2021;13:4368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 2019;286(15):2883–908. https://doi.org/10.1111/febs.14777. Epub 2019 Feb 21.

    Article  CAS  PubMed  Google Scholar 

  22. Bohaumilitzky L, Huber A-K, Stork EM, Wengert S, Woelfl F, Boehm H. A trickster in disguise: Hyaluronan's ambivalent roles in the Matrix. Front Oncol. 2017;7:242. https://doi.org/10.3389/fonc.2017.00242. eCollection 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kouvidi K, Berdiaki A, Nikitovic D, Katonis P, Afratis N, Hascall VC, Karamanos NK, Tzanakakis GN. Role of receptor for hyaluronic acid-mediated motility (RHAMM) in Low Molecular Weight Hyaluronan (LMWHA)-mediated fibrosarcoma cell adhesion. J Biol Chem. 2011;286(44):38509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang C, Cao M, Liu H, He Y, Xu J, Du Y, Liu Y, Wang W, Cui L, Hu J, Gao F. The high and low Molecular weight forms of Hyaluronan have distinct effects on CD44 clustering. J Biol Chem. 2012;287(51):43094–107. https://doi.org/10.1074/jbc.M112.349209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Graça MFP, Miguela SP, Cabrala CSD, Correia IJ. Hyaluronic acid—based wound dressings: a review. Carbohydr Polym. 2020;241:116364. https://doi.org/10.1016/j.carbpol.2020.116364.

    Article  CAS  PubMed  Google Scholar 

  26. Baldino L, Cardea S, Reverchon E. Optimization of hyaff membranes morphology produced by supercritical phase separation for biomedical applications. Chem Eng Trans. 2017;57:1333–8. https://doi.org/10.3303/CET1757223.

    Article  Google Scholar 

  27. Rossi M, Marrazzo P. The potential of honeybee products for biomaterial applications. Biomimetics. 2021;6:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Combarros-Fuertes P, Fresno JM, Estevinho MM, Sousa-Pimenta M, Tornadijo ME, Estevinho LM. Honey: another alternative in the fight against antibiotic-resistant bacteria? Antibiotics. 2020;9:774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Campeau MEM, Patel R. Antibiofilm activity of Manuka honey in combination with antibiotics. Int J Bacteriol. 2014;2014:795281.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Maddocks SE, Jenkins RE. Honey: a sweet solution to the growing problem of antimicrobial resistance? Future Microbiol. 2013;8:1419–29.

    Article  CAS  PubMed  Google Scholar 

  31. Silvia PMD, Gauche C, Gonzaga LV, Costa ACO, Fett R. Honey: chemical composition, stability and authenticity. Food Chem. 2016;196:309–23.

    Article  Google Scholar 

  32. Combarros-Fuertes P, Valencia-Barrera RM, Estevinho LM, Dias LG, Castro JM, Tornadijo ME, Fresno JM. Spanish honeys with quality brand: a multivariate approach to physicochemical parameters, microbiological quality, and floral origin. J Apic Res. 2019;58:92–103.

    Article  Google Scholar 

  33. Hixon KR, Klein RC, Eberlin CT, Linder HR, Ona WJ, Gonzalez H, Sell SA. A critical review and perspective of honey in tissue engineering and clinical wound healing. Adv Wound Care. 2019;8:403–15.

    Article  Google Scholar 

  34. Molan PC. Honey: antimicrobial actions and role in disease management. In: New strategies combating bacterial infection. Weinheim: Wiley; 2009. p. 229–53. ISBN 9783527322060.

    Google Scholar 

  35. Krishnakumar GS, Mahendiran B, Gopalakrishnan S, Muthusamy S, Malarkodi Elangovan S. Honey based treatment strategies for infected wounds and burns: a systematic review of recent pre-clinical research. Wound Med. 2020;30:100188.

    Article  Google Scholar 

  36. Cooper R, Jenkins L, Rowlands R. Inhibition of biofilms through the use of Manuka honey. Wounds. 2011;7:24–32.

    Google Scholar 

  37. Merckoll P, Jonassen TØ, Vad ME, Jeansson SL, Melby KK. Bacteria, biofilm and honey: a study of the effects of honey on “planktonic” and biofilm-embedded chronic Wound bacteria. Scand J Infect Dis. 2009;41:341–7.

    Article  PubMed  Google Scholar 

  38. Jenkins R, Cooper R. Improving antibiotic activity against Wound pathogens with Manuka honey in vitro. PLoS One. 2012;7:e45600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scepankova H, Combarros-Fuertes P, Fresno JM, Tornadijo ME, Dias MS, Pinto CA, Saraiva JA, Estevinho LM. Role of honey in advanced Wound care. Molecules. 2021;26:4784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brudzynski K, Miotto D. The relationship between the content of Maillard reaction-like products and Bioactivity of Canadian honeys. Food Chem. 2011;124:869–74.

    Article  CAS  Google Scholar 

  41. Stewart JA, McGrane OL, Wedmore IS. Wound Care in the Wilderness: is there evidence for honey? Wilderness Environ Med. 2014;25:103–10.

    Article  PubMed  Google Scholar 

  42. Eteraf-Oskouei T, Najafi M, Gharehbagheri A. Natural honey: a new and potent anti-Angiogenic agent in the air-pouch model of inflammation. Drug Res. 2013;64:530–6.

    Article  Google Scholar 

  43. Barui A, Mandal N, Majumder S, Das RK, Sengupta S, Banerjee P, Ray AK, Roychaudhuri C, Chatterjee J. Assessment of Molecular events during in vitro re-epithelialization under honey-alginate Matrix ambience. Mater Sci Eng C. 2013;33:3418–25.

    Article  CAS  Google Scholar 

  44. Manisha Deb Mandal. Shyamapada Mandal: honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed. 2011;1(2):154–60.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Annapoorani A, Anilakumar KR, Khanum F, Murthy NA, Bawa AS. Studies on the physicochemical characteristics of heated honey, honey mixed with ghee and their food consumption pattern by rats. Ayu. 2010;31(2):141–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Molan P, Rhodes T. Honey: a biologic Wound dressing. Wounds. 2015;27:141–51. [PubMed].

    PubMed  Google Scholar 

  47. Wayne RP. Chemistry of atmospheres. Oxford: Oxford Science; 1991. Chimica ambientale, Colin Baird e Michael Cann. Terza edizione italiana condotta sulla quinta edizione americana. A cura di Eudes Lanciotti e Massimo Stefani.Brugherio. Edizione Zanichelli. 2013.

    Google Scholar 

  48. Ministero della Salute. Direzione generale della prevenzione sanitaria. Direzione generale della comunicazione e dei rapporti europei e internazionali: ozono. 2015. https://www.salute.gov.it/imgs/C_17_opuscoliPoster_283_ulterioriallegati_ulterioreallegato_8_alleg.pdf.

  49. Bocci V. Ozone: a new medical drug. Holanda: Springer; 2005.

    Google Scholar 

  50. Schwartz A, Sánchez GM, Sabah F. Madrid declaration on ozone therapy. Madrid: International Scientific Committee of Ozone Therapy; 2015.

    Google Scholar 

  51. Anzolin AP, da Silveira-Kaross NL, Bertol CD. Ozonated oil in wound healing: what has already been proven? Med Gas Res. 2020;10(1):54–9. https://doi.org/10.4103/2045-9912.279985. PMID: 32189671; PMCID: PMC7871935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sadowska J, Johansson B, Johannessen E, Friman R, Broniarz-Press L, Rosenholm JB. Characterization of ozonated vegetable oils by spectroscopic and chromatographic methods. Chem Phys Lipids. 2008;151:85–91.

    Article  CAS  PubMed  Google Scholar 

  53. Marmo E. Farmacologia generale e speciale. Torino: UTET; 1991. p. 146.

    Google Scholar 

  54. Bocci V, Zanardi I, Travagli V. Oxygen/ozone as a medical gas mixture. A critical evaluation of the various methods clarifies positive and negative aspects. Med Gas Res. 2011;1:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cardoso CC, Dias Filho E, Pichara NL, Campos EGC, Pereira MA, Fiorini JE. Ozonoterapia como tratamento adjuvante na ferida de pé diabético. Rev Assoc Med Minas Gerais. 2010;20:442–5.

    Google Scholar 

  56. Shi D, Sheng A, Chi L. Glycosaminoglycan-Protein interactions and their roles in human disease. Front Mol Biosci. 2021;8:639666. https://doi.org/10.3389/fmolb.2021.639666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. da Voet DC, Pratt W, Voet JG, Fondamenti di Biochimica. Zanichelli editore spa. 2013.

    Google Scholar 

  58. Sodhi H, Panitch A. Glycosaminoglycans in Tissue Engineering: A Review. Biomolecules. 2020;11(1):29. https://doi.org/10.3390/biom11010029. PMID: 33383795; PMCID: PMC7823287.

  59. Melrose. Glycosaminoglycans in wound healing. Bone Tissue Regener Insights. 2016;7:29–50. https://doi.org/10.4137/BTRI.S38670.

    Article  Google Scholar 

  60. Arosio E, Ferrari G, Santoro L, Gianese F, Coccheri S, Mesoglycan Venous Insufficiency Group. A placebo-controlled, double-blind study of mesoglycan in the treatment of chronic venous ulcers. Eur J Vasc Endovasc Surg. 2001;22:365–72. https://doi.org/10.1053/ejvs.2001.1478.

    Article  CAS  PubMed  Google Scholar 

  61. Tufano A, Arturo C, Cimino E, Di Minno MN, DiCapua M, Cerbone AM, Di Minno G. Mesoglycan: clinical evidences for use in vascular diseases. Int J Vasc Med. 2010;2010:390643. https://doi.org/10.1155/2010/390643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Belvederea R, Valentina Bizzarro A, Parentea L, Petrella F, Petrella A. Effects of Prisma Skin dermal regeneration device containing glycosaminoglycans on human keratinocytes and fibroblasts. Cell Adh Migr. 2018;12(2):168–83. https://doi.org/10.1080/19336918.2017.1340137.

    Article  CAS  Google Scholar 

  63. Bizzarro V, Belvedere R, Pessolano E, Parente L, Petrella F, Perretti M, Petrella A. Mesoglycan induces keratinocyte activation by triggering syndecan-4 pathway and the formation of the annexin A1/S100A11 complex. J Cell Physiol. 2019;234(11):20174–92. https://doi.org/10.1002/jcp.28618.

    Article  CAS  PubMed  Google Scholar 

  64. Petrella F, Belvedere R, Labbro V, Apicella A, Bizzarro V, Pessolano E, Parente L, Petrella A. A new pharmaceutical device containing mesoglycan modulates fibroblasts function in vivo. Pharmacologyonline. 2020;1:20–30.

    CAS  Google Scholar 

  65. Belvedere R, Bizzarro V, Parente L, Petrella F, Petrella A. The Pharmaceutical device Prisma® skin promotes in vitro angiogenesis through endothelial to mesenchymal transition during skin Wound Healing. Int J Mol Sci. 2017;25(18):pii: E1614. https://doi.org/10.3390/ijms18081614.

    Article  CAS  Google Scholar 

  66. Squadrito F, Bitto A, Irrera N, Pizzino G, Pallio G, Minutoli L, Altavilla D. Pharmacological activity and clinical use of PDRN. Front Pharmacol. 2017;8:224. https://doi.org/10.3389/fphar.2017.00224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Galeano M, Pallio G, Irrera N, Mannino F, Bitto A, Altavilla D, Vaccaro M, Squadrito G, Arcoraci V, Colonna MR, et al. Polydeoxyribonucleotide: a promising biological platform to accelerate impaired skin wound healing. Pharmaceuticals (Basel). 2021;14(11):1103. https://doi.org/10.3390/ph14111103. PMID: 34832885; PMCID: PMC8618295.

  68. Chavan AJ, Haley BE, Volkin DB, Marfia KE, Verticelli AM, Bruner MW, Draper JP, Burke CJ, Middaugh CR. Interaction of nucleotides with acidic fibroblast growth factor (FGF-1). Biochemistry. 1994;33:7193–202.

    Article  CAS  PubMed  Google Scholar 

  69. Thellung S, Florio T, Maragliano A, Cattarini G, Schettini G. Polydeoxyribonucleotides enhance the proliferation of human skin fibroblasts: involvement of A2 purinergic receptor subtypes. Life Sci. 1999;64:1661–74. https://doi.org/10.1016/S0024-3205(99)00104-6.

    Article  CAS  PubMed  Google Scholar 

  70. Jing X, Sun Y, Liu Y, Ma X, Hao H. Alginate/chitosan-based hydrogel loaded with gene vectors to deliver polydeoxyribonucleotide for effective wound healing. Biomater Sci. 2021;9:5533.

    Article  CAS  PubMed  Google Scholar 

  71. Squadrito F, Bitto A, Altavilla D, Arcoraci V, De Caridi G, De Feo ME, Corrao S, Pallio G, Sterrantino C, Minutoli L, Saitta A, Vaccaro M, Cucinotta D. The effect of PDRN, an adenosine receptor A2A agonist, on the healing of chronic diabetic foot ulcers: results of a clinical trial. J Clin Endocrinol Metab. 2014;99(5):E746–53. https://doi.org/10.1210/jc.2013-3569. Epub 2014 Jan 31. Erratum in: J Clin Endocrinol Metab. 2015 Feb;100(2):763. PMID: 24483158.

    Article  CAS  PubMed  Google Scholar 

  72. Valdatta L, Thione A, Mortarino C, Buoro M, Tuinder S. Evaluation of the efficacy of polydeoxyribonucleotides in the healing process of autologous skin graft donor sites: a pilot study. Curr Med Res Opin. 2004;20:403–8. https://doi.org/10.1185/030079904125003116.

    Article  CAS  PubMed  Google Scholar 

  73. Polito F, Bitto A, Galeano M, Irrera N, Marini H, Cal M, et al. Polydeoxyribonucleotide restores blood flow in an experimental model of ischemic skin flaps. J Vasc Surg. 2012;55:479–88. https://doi.org/10.1016/j.jvs.2011.07.083.

    Article  PubMed  Google Scholar 

  74. Chung KI, Kim HK, Kim WS, Bae TH. The effects of polydeoxyribonucleotide on the survival of random pattern skin flaps in rats. Arch Plast Surg. 2013;40:181–6. https://doi.org/10.5999/aps.2013.40.3.181.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cuomo O, et al. Oligosaccharidic fractions derived from Triticum vulgare extract accelerate tissutal repairing processes in in vitro and in vivo models of skin lesions. J Ethnopharmacol. 2015;158:198.

    Google Scholar 

  76. Cuomo O, et al. Triticum vulgare extract exerts an antiinflammatory action in two in vitro models of inflammation in microglial cells. Plos One. 2018;14:e0197493.

    Google Scholar 

  77. Romanelli M, et al. Triticum vulgare extract modulates protein-kinase B and matrix metalloproteinases 9 protein expression in BV-2 cells: bioactivity on inflammatory pathway associated with molecular mechanism wound healing. Mediat Inflamm. 2020;2020:1.

    Google Scholar 

  78. Limauro D, et al. Antioxidant capacity of Rigenase®, a specific aqueous extract of Triticum vulgare. Antioxidants. 2018;7:67.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tito, et al. A Triticum vulgare extract exhibits regenerating activity during the wound healing process. Clin Cosmet Investig Dermatol. 2020;13:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schiraldi C, et al. Molecular mechanisms at the basis of pharmaceutical grade Triticum vulgare extract efficacy in prompting keratinocytes healing. Molecules. 2020;25(3):431.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Martini P, et al. Efficacy and tolerability of Fitostimoline® in two different forms (soaked gauzes and cream) and Ci-trizan Gel in the topical treatment of second-degree superficial cutaneous burns. Dermatol Res Pract. 2011;2011:978291.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Silvestrini S, WUWHS. The fundamental role of bioactive medications based on Rigenase® (aqueous extract of Triticum Vulgare) and Phenoxitanol in the treatment of pressure injuries, dehiscences of surgical wounds, first and second degree burns, abrasions, breast fissures secondary to lactation, anal fissures—an observational study. 2020

    Google Scholar 

  83. Dissemond J, Augustin M, Dietlein M, Faust U, Keuthage W, Lobmann R, Münter KC, Strohal R, Stücker M, Traber J, Vanscheidt W, Läuchli S. Efficacy of MMP-inhibiting wound dressings in the treatment of chronic wounds: a systematic review. J Wound Care. 2020;29(2):102–18. https://doi.org/10.12968/jowc.2020.29.2.102. PMID: 32058850.

    Article  PubMed  Google Scholar 

  84. Lenci E, Cosottini L, Trabocchi A. Novel matrix metalloproteinase inhibitors: an updated patent review (2014–2020). Expert Opin Ther Pat. 2021;31:509.

    Article  CAS  PubMed  Google Scholar 

  85. Dissemond J, Dowsett C, Schultz G, Serena T. EPA made easy. Wounds Int. 2013;4:1.

    Google Scholar 

  86. Cullen B, Smith R, McCullock E, et al. Mechanism of action of PROMOGRAN®, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Repair Regen. 2002;10:16–25.

    Article  PubMed  Google Scholar 

  87. Lee WL, Downey GP. Leukocyte elastase. Physiological functions and role in acute lung injury. Am J Repir Crit Care Med. 2001;164:896–904.

    Article  CAS  Google Scholar 

  88. Löffek S, Schilling O, Franzke CW. Series “matrix metalloproteinases in lung health and disease”: biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38(1):191–208. https://doi.org/10.1183/09031936.00146510. Epub 2010 Dec 22. PMID: 21177845.

    Article  CAS  PubMed  Google Scholar 

  89. Loffek S, Schilling O, Franzke C-W. Biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38:191–208. https://doi.org/10.1183/09031936.00146510.

    Article  CAS  PubMed  Google Scholar 

  90. Rai RR, Phadke MS. Plasma antiprotease status indifferent respiratory disorders. Int J Pulmon Med. 2007;7(1):1. https://doi.org/10.5580/1d0.

    Article  Google Scholar 

  91. Alameddinea HS, Morganb JE. Matrix metalloproteinases and tissue inhibitor of metalloproteinases review. J Neuromusc Dis. 2016;3:455–73.

    Article  Google Scholar 

  92. McCarty SM, Cochrane CA, Clegg PD, Percival SL. The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing. Wound Repair Regen. 2012;20(2):125–36.

    Article  PubMed  Google Scholar 

  93. Widgerow AD. Deconstructing the stalled wound review. Wounds. 2012;24(3):58–66.

    PubMed  Google Scholar 

  94. Loh ML, Goh BKL, Kong Y, et al. Combination therapy of oxidised regenerated cellulose/collagen/silver dressings with negative pressure wound therapy for coverage of exposed critical structures in complex lower extremity wounds. Int Wound J. 2020;17:1356–65. https://doi.org/10.1111/iwj.13406.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cullen B, Watt PW, Lundqvist C, et al. The role of oxidised regenerated cellulose/collagen in chronic wound repair and its potential mechanism of action. Int J Biochem Cell Biol. 2002;34(12):1544–56.

    Article  CAS  PubMed  Google Scholar 

  96. Richard JL, Martini J, Bonello Faraill MM, Bemba JM, Lepeut M, Truchetet F, Ehrler S, Schuldiner S, Sauvadet A, Bohbot S. Management of diabetic foot ulcers with a TLC-NOSF wound dressing. J Wound Care. 2012;21(3):142–7. https://doi.org/10.12968/jowc.2012.21.3.142. PMID: 22399083.

    Article  CAS  PubMed  Google Scholar 

  97. Lázaro-Martínez JL, Edmonds M, Rayman G, Apelqvist J, Van Acker K, Hartemann A, Martini J, Lobmann R, Bohbot S, Kerihuel JC, Piaggesi A. Optimal wound closure of diabetic foot ulcers with early initiation of TLC-NOSF treatment: post-hoc analysis of explorer. J Wound Care. 2019;28(6):358–67. https://doi.org/10.12968/jowc.2019.28.6.358. PMID: 31166858.

    Article  PubMed  Google Scholar 

  98. Schmutz JL, Meaume S, Fays S, Ourabah Z, Guillot B, Thirion V, Collier M, Barrett S, Smith J, Bohbot S, Dompmartin A. Evaluationof the nano-oligosaccharide factor lipido-colloid matrix in the local management of venous leg ulcers: results of a randomised, controlled trial. Int Wound J. 2008;5:172–82.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Coulomb B, Couty L, Fournier B, et al. Evaluation of the matrix impregnated with NOSF (Nano oligo saccharide factor) in an in vitro dermal reconstruction model. JPC. 2008;63(8):54–7.

    Google Scholar 

  100. Nair H, Venkateshwaran N, Seetharaman SS, Deng W, Uthaipaisanwong A, Galea E. Benefits of sucrose octasulfate (TLC-NOSF) dressings in the treatment of chronic wounds: a systematic review. J Wound Care. 2021;30(Sup4):S42–52. https://doi.org/10.12968/jowc.2021.30.Sup4.S42. PMID: 33856929.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco D’Andrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Andrea, F., Mosella, F. (2023). Bioinductive Dressing. In: Maruccia, M., Papa, G., Ricci, E., Giudice, G. (eds) Pearls and Pitfalls in Skin Ulcer Management. Springer, Cham. https://doi.org/10.1007/978-3-031-45453-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45453-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45452-3

  • Online ISBN: 978-3-031-45453-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics