Skip to main content

Evidence-Based and Clinical Experimentation on Cell Therapy

  • Chapter
  • First Online:
Pearls and Pitfalls in Skin Ulcer Management

Abstract

Several local and systemic conditions could lead to chronic ulcers. Remarkable improvements have been made in wound dressing technologies in the last few decades; nonetheless, the progressive aging of our society and incidence of chronic diseases are increasing the incidence of non-healing ulcers, with high social and healthcare costs. Many pathophysiological alterations could lead to wound healing impairment, including altered inflammatory response, difficult neoangiogenesis, and cell senescence. It is now understood how cell therapy can target these alterations in non-healing ulcers, providing active and healthy cells and regulating growth factors in a paracrine manner. This chapter aimed to present a brief overview of main cell therapy options while discussing currently available clinical evidence for cell therapy applied to ulcer management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen IK, Diegelmann RF, Lindblad W. Wound healing: biochemical and clinical aspects. Plast Reconstr Surg. 1992;2116:2116.

    Google Scholar 

  2. Krause PJ, Ingardia CJ, Pontius LT, Malech HL, LoBello TM, Maderazo EG. Host defense during pregnancy: neutrophil chemotaxis and adherence. Am J Obstet Gynecol. 1987;157:274–80. https://doi.org/10.1016/S0002-9378(87)80150-3.

    Article  CAS  PubMed  Google Scholar 

  3. Mekkes JR, Westerhof W. Image processing in the study of wound healing. Clin Dermatol. 1995;13:401–7. https://doi.org/10.1016/0738-081X(95)00071-M.

    Article  CAS  PubMed  Google Scholar 

  4. Levin M. Diabetic foot wounds: pathogenesis and management. Adv Wound Care. 1993;10(2):24.

    Google Scholar 

  5. Kerstein MD. The scientific basis of healing. Adv Wound Care. 1997;10:30–6.

    CAS  PubMed  Google Scholar 

  6. Frykberg RG. Diabetic foot ulcers: pathogenesis and management. Am Fam Physician. 2002;14:1845–53.

    Google Scholar 

  7. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6:265sr6. https://doi.org/10.1126/scitranslmed.3009337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Groppa E, Colliva A, Vuerich R, Kocijan T, Zacchigna S. Immune cell therapies to improve regeneration and revascularization of non-healing wounds. Int J Mol Sci. 2020;21:1–22. https://doi.org/10.3390/ijms21155235.

    Article  CAS  Google Scholar 

  9. Atkin L, Bucko Z, Conde Montero E, Cutting K, Moffatt C, Probst A, Romanelli M, Schultz GS, Tettelbach W. Implementing TIMERS : the race against hard-to-heal wounds inflammation / infection social factors edge regeneration moisture tissue. J Wound Care. 2019;28:S1–S50.

    Article  Google Scholar 

  10. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015;4:560–82. https://doi.org/10.1089/wound.2015.0635.

    Article  Google Scholar 

  11. Agostinis C, Spazzapan M, Vuerich R, Balduit A, Stocco C, Mangogna A, Ricci G, Papa G, Zacchigna S, Bulla R. Differential capability of clinically employed dermal regeneration scaffolds to support vascularization for tissue bioengineering. Biomedicine. 2021;9:1458. https://doi.org/10.3390/biomedicines9101458.

    Article  CAS  Google Scholar 

  12. Schönborn M, Łączak P, Pasieka P, Borys S, Płotek A, Maga P. Pro- and anti-Angiogenic factors: their relevance in diabetic foot syndrome—a review. Angiology. 2022;73:299–311. https://doi.org/10.1177/00033197211042684.

    Article  CAS  PubMed  Google Scholar 

  13. Rai V, Moellmer R, Agrawal DK. Stem cells and angiogenesis: implications and limitations in enhancing chronic diabetic foot ulcer healing. Cell. 2022;11:1–14. https://doi.org/10.3390/cells11152287.

    Article  CAS  Google Scholar 

  14. Przekora A. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: can we reconstruct functional skin tissue in vitro? Cell. 2020;9:1–29. https://doi.org/10.3390/cells9071622.

    Article  CAS  Google Scholar 

  15. Gurusamy N, Alsayari A, Rajasingh S, Rajasingh J. Adult stem cells for regenerative therapy. Prog Mol Biol Transl Sci. 2018;160:1–22. https://doi.org/10.1016/BS.PMBTS.2018.07.009.

    Article  CAS  PubMed  Google Scholar 

  16. Paliwal S, Chaudhuri R, Agrawal A, Mohanty S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci. 2018;25:1–12. https://doi.org/10.1186/s12929-018-0429-1.

    Article  CAS  Google Scholar 

  17. Gimble JM, Guilak F, Bunnell BA. Clinical and Pre clinical translation of cell based therapies using adipose tissue derived cells. Stem Cell Res Ther. 2010;1:1–8.

    Article  Google Scholar 

  18. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2012;85:3–10. https://doi.org/10.1159/000345615.

    Article  PubMed  Google Scholar 

  19. Vats A, Bielby RC, Tolley NS, Nerem R, Polak JM. Stem cells. Lancet. 2005;366:592–602. https://doi.org/10.1016/S0140-6736(05)66879-1.

    Article  CAS  PubMed  Google Scholar 

  20. Lodi D, Iannitti T, Palmieri B. Stem cells in clinical practice: applications and warnings. J Exp Clin Cancer Res. 2011;30:1–20. https://doi.org/10.1186/1756-9966-30-9.

    Article  Google Scholar 

  21. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72. https://doi.org/10.1016/j.cell.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  22. Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012;481:295–305. https://doi.org/10.1038/nature10761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blenkinsop TA, Corneo B, Temple S, Stern JH. Ophthalmologic stem cell transplantation therapies. Regen Med. 2012;7:32–9.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshihara M, Hayashizaki Y, Murakawa Y. Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell Rev Rep. 2017;13:7–16. https://doi.org/10.1007/s12015-016-9680-6.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, Xie Z, Zhang C, Wang Y. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med. 2015;13:1–14. https://doi.org/10.1186/s12967-015-0417-0.

    Article  CAS  Google Scholar 

  26. Lee SJ, Park C, Lee JY, Kim S, Kwon PJ, Kim W, Jeon YH, Lee E, Yoon YS. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci Rep. 2015;5:1–13. https://doi.org/10.1038/srep11019.

    Article  CAS  Google Scholar 

  27. Zhao L, Guo Z, Chen K, Yang W, Wan X, Zeng P, He H, Luo Y, Xiao Q, Mo Z. Combined transplantation of mesenchymal stem cells and endothelial Colony-forming cells accelerates refractory diabetic foot ulcer healing. Stem Cells Int. 2020;2020:1. https://doi.org/10.1155/2020/8863649.

    Article  CAS  Google Scholar 

  28. Kong P, Xie X, Li F, Liu Y, Lu Y. Placenta mesenchymal stem cell accelerates wound healing by enhancing angiogenesis in diabetic Goto-Kakizaki (GK) rats. Biochem Biophys Res Commun. 2013;438:410–9. https://doi.org/10.1016/j.bbrc.2013.07.088.

    Article  CAS  PubMed  Google Scholar 

  29. Abd-Allah SH, El-Shal AS, Shalaby SM, Abd-Elbary E, Mazen NF, Abdel Kader RR. The role of placenta-derived mesenchymal stem cells in healing of induced full-thickness skin wound in a mouse model. IUBMB Life. 2015;67:701–9. https://doi.org/10.1002/iub.1427.

    Article  CAS  PubMed  Google Scholar 

  30. Trounson A, McDonald C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell. 2015;17:11–22. https://doi.org/10.1016/j.stem.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  31. Yang YJ, Li XL, Xue Y, Zhang CX, Wang Y, Hu X, Dai Q. Bone marrow cells differentiation into organ cells using stem cell therapy. Eur Rev Med Pharmacol Sci. 2016;20:2899–907.

    PubMed  Google Scholar 

  32. An Y, Wei W, Jing H, Ming L, Liu S, Jin Y. Bone marrow mesenchymal stem cell aggregate: An optimal cell therapy for full-layer cutaneous wound vascularization and regeneration. Sci Rep. 2015;5:1–12. https://doi.org/10.1038/srep17036.

    Article  CAS  Google Scholar 

  33. Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns. 2014;40:1375–83. https://doi.org/10.1016/j.burns.2014.01.023.

    Article  PubMed  Google Scholar 

  34. Sun M, He Y, Zhou T, Zhang P, Gao J, Lu F. Adipose extracellular matrix/stromal vascular fraction gel secretes Angiogenic factors and enhances skin wound healing in a murine model. Biomed Res Int. 2017;2017:1. https://doi.org/10.1155/2017/3105780.

    Article  CAS  Google Scholar 

  35. Marino D, Luginbühl J, Scola S, Meuli M, Reichmann E. Bioengineering: bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med. 2014;6:221. https://doi.org/10.1126/scitranslmed.3006894.

    Article  CAS  Google Scholar 

  36. Athirasala A, Lins F, Tahayeri A, Hinds M, Smith AJ, Sedgley C, Ferracane J, Bertassoni LE. A novel strategy to engineer pre-vascularized full-length dental pulp-like tissue constructs. Sci Rep. 2017;7:1–11. https://doi.org/10.1038/s41598-017-02532-3.

    Article  CAS  Google Scholar 

  37. Meuli M, Hartmann-Fritsch F, Hüging M, Marino D, Saglini M, Hynes S, Neuhaus K, Manuel E, Middelkoop E, Reichmann E, et al. A cultured autologous Dermo-epidermal skin substitute for full-thickness skin defects: a phase I, open, prospective clinical trial in children. Plast Reconstr Surg. 2019;144:188–98. https://doi.org/10.1097/PRS.0000000000005746.

    Article  CAS  PubMed  Google Scholar 

  38. Carstens MH, Quintana FJ, Calderwood ST, Sevilla JP, Ríos AB, Rivera CM, Calero DW, Zelaya ML, Garcia N, Bertram KA, et al. Treatment of chronic diabetic foot ulcers with adipose-derived stromal vascular fraction cell injections: safety and evidence of efficacy at 1 year. Stem Cells Transl Med. 2021;10:1138–47. https://doi.org/10.1002/sctm.20-0497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shingyochi Y, Orbay H, Mizuno H. Adipose-derived stem cells for wound repair and regeneration. Expert Opin Biol Ther. 2015;15:1285–92. https://doi.org/10.1517/14712598.2015.1053867.

    Article  CAS  PubMed  Google Scholar 

  40. Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, André M, Cousin B, Gourmelon P, Benderitter M, Casteilla L, Tamarat R. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol. 2009;29:503–10. https://doi.org/10.1161/ATVBAHA.108.178962.

    Article  CAS  PubMed  Google Scholar 

  41. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109:1292–8. https://doi.org/10.1161/01.CIR.0000121425.42966.F1.

    Article  PubMed  Google Scholar 

  42. Andia I, Maffulli N, Burgos-Alonso N. Stromal vascular fraction technologies and clinical applications. Expert Opin Biol Ther. 2019;19:1289–305. https://doi.org/10.1080/14712598.2019.1671970.

    Article  PubMed  Google Scholar 

  43. Gentile P, Scioli MG, Orlandi A, Cervelli V. Breast reconstruction with enhanced stromal vascular fraction fat grafting: what is the best method? Plast Reconstr Surg Glob Open. 2015;3:1–9. https://doi.org/10.1097/GOX.0000000000000285.

    Article  Google Scholar 

  44. Qayyum AA, Haack-Sørensen M, Mathiasen AB, Jørgensen E, Ekblond A, Kastrup J. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell trial): study design. Regen Med. 2012;7:421–8. https://doi.org/10.2217/rme.12.17.

    Article  CAS  PubMed  Google Scholar 

  45. Wolf DA, Beeson W, Rachel JD, Keller GS, Hanke CW, Waibel J, Leavitt M, Sacopulos M. Mesothelial stem cells and stromal vascular fraction for skin rejuvenation. Facial Plast Surg Clin North Am. 2018;26:513–32. https://doi.org/10.1016/J.FSC.2018.06.011.

    Article  PubMed  Google Scholar 

  46. Fang B, Song Y, Liao L, Zhang Y, Zhao RC. Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant Proc. 2007;39:3358–62. https://doi.org/10.1016/j.transproceed.2007.08.103.

    Article  CAS  PubMed  Google Scholar 

  47. Riordan NH, Ichim TE, Min WP, Wang H, Solano F, Lara F, Alfaro M, Rodriguez JP, Harman RJ, Patel AN, et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med. 2009;7:1–9. https://doi.org/10.1186/1479-5876-7-29.

    Article  CAS  Google Scholar 

  48. Carstens MH, Gómez A, Cortés R, Turner E, Pérez C, Ocon M, Correa D. Non-reconstructable peripheral vascular disease of the lower extremity in ten patients treated with adipose-derived stromal vascular fraction cells. Stem Cell Res. 2017;18:14–21. https://doi.org/10.1016/j.scr.2016.12.001.

    Article  PubMed  Google Scholar 

  49. Zollino I, Campioni D, Sibilla MG, Tessari M, Malagoni AM, Zamboni P. A phase II randomized clinical trial for the treatment of recalcitrant chronic leg ulcers using centrifuged adipose tissue containing progenitor cells. Cytotherapy. 2019;21:200–11. https://doi.org/10.1016/j.jcyt.2018.10.012.

    Article  CAS  PubMed  Google Scholar 

  50. De La Portilla F, Alba F, García-Olmo D, Herrerías JM, González FX, Galindo A. Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial. Int J Color Dis. 2013;28:313–23. https://doi.org/10.1007/s00384-012-1581-9.

    Article  Google Scholar 

  51. Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, Park JH, Lee SY, Kim SP, Kim YD, et al. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J. 2012;76:1750–60. https://doi.org/10.1253/circj.CJ-11-1135.

    Article  CAS  PubMed  Google Scholar 

  52. Kakagia D, Pallua N. Autologous fat grafting: in search of the optimal technique. Surg Innov. 2014;50:538–42. https://doi.org/10.1177/1553350613518846.

    Article  Google Scholar 

  53. Bajek A, Gurtowska N, Olkowska J, Maj M, Kaźmierski Ł, Bodnar M, Marszałek A, Dębski R, Drewa T. Does the harvesting technique affect the properties of adipose-derived stem cells?—the comparative biological characterization. J Cell Biochem. 2017;118:1097–107. https://doi.org/10.1002/jcb.25724.

    Article  CAS  PubMed  Google Scholar 

  54. Shu W, Shu YT, Dai CY, Zhen QZ. Comparing the biological characteristics of adipose tissue-derived stem cells of different persons. J Cell Biochem. 2012;113:2020–6. https://doi.org/10.1002/jcb.24070.

    Article  CAS  PubMed  Google Scholar 

  55. Strong AL, Cederna PS, Rubin JP, Coleman SR, Levi B. The current state of fat grafting: a review of harvesting, processing, and injection techniques. Plast Reconstr Surg. 2015;136:897–912. https://doi.org/10.1097/PRS.0000000000001590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Prins H-J, Schulten EAJM, ten Bruggenkate CM, Klein-Nulend J, Helder MN. Bone regeneration using the freshly isolated autologous stromal vascular fraction of adipose tissue in combination with calcium phosphate ceramics. Stem Cells Transl Med. 2016;5:1362–74. https://doi.org/10.5966/sctm.2015-0369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Conese M, Annacontini L, Carbone A, Beccia E, Cecchino LR, Parisi D, Di Gioia S, Lembo F, Angiolillo A, Mastrangelo F, et al. The role of adipose-derived stem cells, dermal regenerative templates, and platelet-rich plasma in tissue engineering-based treatments of chronic skin wounds. Stem Cells Int. 2020;2020:1. https://doi.org/10.1155/2020/7056261.

    Article  CAS  Google Scholar 

  58. Holm JS, Toyserkani NM, Sorensen JA. Adipose-derived stem cells for treatment of chronic ulcers: current status. Stem Cell Res Ther. 2018;9:1–11. https://doi.org/10.1186/s13287-018-0887-0.

    Article  Google Scholar 

  59. Han SK, Kim HR, Kim WK. The treatment of diabetic foot ulcers with uncultured, processed lipoaspirate cells: a pilot study. Wound Repair Regen. 2010;18:342–8. https://doi.org/10.1111/j.1524-475X.2010.00593.x.

    Article  PubMed  Google Scholar 

  60. Marino G, Moraci M, Armenia E, Orabona C, Sergio R, De Sena G, Capuozzo V, Barbarisi M, Rosso F, Giordano G, et al. Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. J Surg Res. 2013;185:36–44. https://doi.org/10.1016/j.jss.2013.05.024.

    Article  PubMed  Google Scholar 

  61. Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL, Saint-Lebese B, Peyrafitte JA, Fleury S, Gadelorge M, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014;16:245–57. https://doi.org/10.1016/j.jcyt.2013.11.011.

    Article  CAS  PubMed  Google Scholar 

  62. Raposio E, Bertozzi N, Bonomini S, Bernuzzi G, Formentini A, Grignaffini E, Grieco MP. Adipose-derived stem cells added to platelet-rich plasma for chronic skin ulcer therapy. Wounds. 2016;28:126–31.

    PubMed  Google Scholar 

  63. Chopinaud M, Labbé D, Creveuil C, Marc M, Bénateau H, Mourgeon B, Chopinaud E, Veyssière A, Dompmartin A. Autologous adipose tissue graft to treat hypertensive leg ulcer: a pilot study. Dermatology. 2017;233(2–3):234–41. https://doi.org/10.1159/000478009. Epub 2017 Jul 27.

    Article  CAS  PubMed  Google Scholar 

  64. Sharaf K, Kleinsasser A, Schwenk-Zieger S, Gires O, Schinke H, Kohlbauer V, Jakob M, Canis M, Haubner F. Molecular characterization of Lipoaspirates used in regenerative head and neck surgery. JAMA Facial Plast Surg. 2019;21(6):526–34. https://doi.org/10.1001/jamafacial.2019.0851. PMID: 31556908; PMCID: PMC6764019.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lee JW, Park SH, Lee SJ, Kim SH, Suh IS, Jeong HS. Clinical impact of highly condensed stromal vascular fraction injection in surgical management of depressed and contracted scars. Aesthet Plast Surg. 2018;42(6):1689–98. https://doi.org/10.1007/s00266-018-1216-9. Epub 2018 Sep 6.

    Article  Google Scholar 

  66. Bourne DA, Thomas RD, Bliley J, Haas G, Wyse A, Donnenberg A, Donnenberg VS, Chow I, Cooper R, Coleman S, Marra K, Pasquina PF, Rubin JP. Amputation-site soft-tissue restoration using adipose stem cell therapy. Plast Reconstr Surg. 2018;142(5):1349–52. https://doi.org/10.1097/PRS.0000000000004889.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Papa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrari, A., Stocco, C., Bulla, R., Zacchigna, S., Papa, G. (2023). Evidence-Based and Clinical Experimentation on Cell Therapy. In: Maruccia, M., Papa, G., Ricci, E., Giudice, G. (eds) Pearls and Pitfalls in Skin Ulcer Management. Springer, Cham. https://doi.org/10.1007/978-3-031-45453-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45453-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45452-3

  • Online ISBN: 978-3-031-45453-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics