Skip to main content

Ultrasound in Wound Care

  • Chapter
  • First Online:
Pearls and Pitfalls in Skin Ulcer Management

Abstract

Low-frequency ultrasound has shown promising therapeutic outcomes for different wounds. The main advantage of applying ultrasound in the treatment of wounds is that it penetrates deeply into the wound bed, promoting wound healing in a painless way and mainly with no harmful effects. In addition to antimicrobial effects, triggering wound healing physiological mechanisms are among the mechanisms of action of US in wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Speed CA. Therapeutic ultrasound in soft tissue lesions. Rheumatology (Oxford). 2001;40(12):1331–6. https://doi.org/10.1093/rheumatology/40.12.1331.

    Article  CAS  PubMed  Google Scholar 

  2. Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IR, Bioeffects Committee of the American Institute of Ultrasound in Medicine. Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med. 2012;31(4):623–34. https://doi.org/10.7863/jum.2012.31.4.623.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xin Z, Lin G, Lei H, Lue TF, Guo Y. Clinical applications of low-intensity pulsed ultrasound and its potential role in urology. Transl Androl Urol. 2016;5(2):255–66. https://doi.org/10.21037/tau.2016.02.04.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dinno MA, Dyson M, Young SR, Mortimer AJ, Hart J, Crum LA. The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound. Phys Med Biol. 1989;34(11):1543–52. https://doi.org/10.1088/0031-9155/34/11/003.

    Article  CAS  PubMed  Google Scholar 

  5. Watson T. Ultrasound in contemporary physiotherapy practice. Ultrasonics. 2008;48(4):321–9. https://doi.org/10.1016/j.ultras.2008.02.004.

    Article  PubMed  Google Scholar 

  6. Wolcott RD, Kennedy JP, Dowd SE. Regular debridement is the main tool for maintaining a healthy wound bed in most chronic wounds. J Wound Care. 2009;18(2):54–6. https://doi.org/10.12968/jowc.2009.18.2.38743.

    Article  CAS  PubMed  Google Scholar 

  7. Voigt J, Wendelken M, Driver V, Alvarez OM. Low-frequency ultrasound (20-40 kHz) as an adjunctive therapy for chronic wound healing: a systematic review of the literature and meta-analysis of eight randomized controlled trials. Int J Low Extrem Wounds. 2011;10(4):190–9. https://doi.org/10.1177/1534734611424648.

    Article  PubMed  Google Scholar 

  8. Breuing KH, Bayer L, Neuwalder J, Orgill DP. Early experience using low-frequency ultrasound in chronic wounds. Ann Plast Surg. 2005;55(2):183–7. https://doi.org/10.1097/01.sap.0000168695.20350.07.

    Article  CAS  PubMed  Google Scholar 

  9. Altland OD, Dalecki D, Suchkova VN, Francis CW. Low-intensity ultrasound increases endothelial cell nitric oxide synthase activity and nitric oxide synthesis. J Thromb Haemost. 2004;2(4):637–43. https://doi.org/10.1111/j.1538-7836.2004.00655.x.

    Article  CAS  PubMed  Google Scholar 

  10. Suchkova V, Siddiqi FN, Carstensen EL, Dalecki D, Child S, Francis CW. Enhancement of fibrinolysis with 40-kHz ultrasound. Circulation. 1998;98(10):1030–5. https://doi.org/10.1161/01.CIR.98.10.1030.

    Article  CAS  PubMed  Google Scholar 

  11. Stanisic MM, Provo BJ, Larson DL, Kloth LC. Wound debridement with 25 kHz ultrasound. Adv Skin Wound Care. 2005;18(9):484–90. https://doi.org/10.1097/00129334-200,511,000-00012.

    Article  PubMed  Google Scholar 

  12. Lai J, Pittelkow MR. Physiological effects of ultrasound mist on fibroblasts. Int J Dermatol. 2007;46(6):587–93. https://doi.org/10.1111/j.1365-4632.2007.02914.x.

    Article  PubMed  Google Scholar 

  13. Escandon J, Vivas AC, Perez R, Kirsner R, Davis S. A prospective pilot study of ultrasound therapy effectiveness in refractory venous leg ulcers. Int Wound J. 2012;9(5):570–8. https://doi.org/10.1111/j.1742-481X.2011.00921.x.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Samuels JA, Weingarten MS, Margolis DJ, Zubkov L, Sunny Y, Bawiec CR, Conover D, Lewin PA. Low-frequency (<100 kHz), low-intensity (<100 mW/cm(2)) ultrasound to treat venous ulcers: a human study and in vitro experiments. J Acoust Soc Am. 2013;134(2):1541–7. https://doi.org/10.1121/1.4812875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maher SF, Halverson J, Misiewicz R, Reckling T, Smart O, Benton C, Schoenherr D. Low-frequency ultrasound for patients with lower leg ulcers due to chronic venous insufficiency: a report of two cases. Ostomy Wound Manage. 2014;60(2):52–61.

    PubMed  Google Scholar 

  16. Bell AL, Cavorsi J. Noncontact ultrasound therapy for adjunctive treatment of nonhealing wounds: retrospective analysis. Phys Ther. 2008;88(12):1517–24. https://doi.org/10.2522/ptj.20080009.

    Article  PubMed  Google Scholar 

  17. Ennis WJ, Valdes W, Gainer M, Meneses P. Evaluation of clinical effectiveness of MIST ultrasound therapy for the healing of chronic wounds. Adv Skin Wound Care. 2006;19(8):437–46. https://doi.org/10.1097/00129334-200610000-00011.

    Article  PubMed  Google Scholar 

  18. Yao M, Hasturk H, Kantarci A, Gu G, Garcia-Lavin S, Fabbi M, Park N, Hayashi H, Attala K, French MA, Driver VR. A pilot study evaluating non-contact low-frequency ultrasound and underlying molecular mechanism on diabetic foot ulcers. Int Wound J. 2014;11(6):586–93. https://doi.org/10.1111/iwj.12005.

    Article  PubMed  Google Scholar 

  19. Voigt J, Alvarez O. Low frequency ultrasound (20-40 kHz) as an adjunctive therapy for chronic wound healing: a systematic review of the literature and meta-analysis of eight randomised controlled trials. Int J Low Extrem Wound. 2011;10(4):190–9.

    Article  Google Scholar 

  20. Driver VR, Yao M, Miller CJ. Noncontact low-frequency ultrasound therapy in the treatment of chronic wounds: a meta-analysis. Wound Repair Regen. 2011;19(4):475–80. https://doi.org/10.1111/j.1524-475X.2011.00701.x.

    Article  PubMed  Google Scholar 

  21. Ennis WJ, Lee C, Gellada K, Corbiere T, Koh TJ. Advanced technologies to improve wound healing: electrical stimulation, vibration therapy, and ultrasound—what is the evidence? Plast Reconstruct Surg. 2016;138(3 Suppl):94S–104S.

    Article  CAS  Google Scholar 

  22. Cole PS, Quisberg J, Melin MM. Adjuvant use of acoustic pressure wound therapy for treatment of chronic wounds: a retrospective analysis. J Wound Ostomy Continence Nurs. 2009;36(2):171–7. https://doi.org/10.1097/01.WON.0000347658.79722.f9.

    Article  PubMed  Google Scholar 

  23. Gehling ML, Samies JH. The effect of noncontact, low-intensity, low-frequency therapeutic ultrasound on lower-extremity chronic wound pain: a retrospective chart review. Ostomy Wound Manage. 2007;53(3):44–50.

    PubMed  Google Scholar 

  24. Crone S, Garde C, Bjarnsholt T, Alhede M. A novel in vitro wound biofilm model used to evaluate low-frequency ultrasonic-assisted wound debridement. J Wound Care. 2015;24(2):64. https://doi.org/10.12968/jowc.2015.24.2.64.

    Article  CAS  PubMed  Google Scholar 

  25. Scales BS, Huffnagle GB. The microbiome in wound repair and tissue fibrosis. J Pathol. 2013;229(2):323–31. https://doi.org/10.1002/path.4118.

    Article  CAS  PubMed  Google Scholar 

  26. Nussbaum EL. Ultrasound: to heat or not to heat—that is the question. Phys Ther Rev. 1997;2(2):59–72. https://doi.org/10.1179/ptr.1997.2.2.59.

    Article  Google Scholar 

  27. ter Haar G. Therapeutic ultrasound. Eur J Ultrasound. 1999;9(1):3–9. https://doi.org/10.1016/s0929-8266(99)00013-0.

    Article  PubMed  Google Scholar 

  28. Maxwell L. Therapeutic ultrasound: its effects on the cellular and molecular mechanisms of inflammation and repair. Physiotherapy. 1992;78(6):421–6. https://doi.org/10.1016/S0031-9406(10)61528-3.

    Article  Google Scholar 

  29. Mortimer AJ, Dyson M. The effect of therapeutic ultrasound on calcium uptake in fibroblasts. Ultrasound Med Biol. 1988;14(6):499–506. https://doi.org/10.1016/0301-5629(88)90111-1.

    Article  CAS  PubMed  Google Scholar 

  30. Nussbaum EL, Biemann I, Mustard B. Comparison of ultrasound/ultraviolet-C and laser for treatment of pressure ulcers in patients with spinal cord injury. Phys Ther. 1994;74(9):812–23. https://doi.org/10.1093/ptj/74.9.812.

    Article  CAS  PubMed  Google Scholar 

  31. Leung MC, Ng GY, Yip KK. Effect of ultrasound on acute inflammation of transected medial collateral ligaments. Arch Phys Med Rehabil. 2004;85(6):963–6. https://doi.org/10.1016/j.apmr.2003.07.018.

    Article  PubMed  Google Scholar 

  32. Ciccone CD, Leggin BG, Callamaro JJ. Effects of ultrasound and trolamine salicylate phonophoresis on delayed-onset muscle soreness. Phys Ther. 1991;71(9):666–75. https://doi.org/10.1093/ptj/71.9.666a.

    Article  CAS  PubMed  Google Scholar 

  33. Young SR, Dyson M. The effect of therapeutic ultrasound on angiogenesis. Ultrasound Med Biol. 1990;16(3):261–9. https://doi.org/10.1016/0301-5629(90)90005-W.

    Article  CAS  PubMed  Google Scholar 

  34. Young SR, Dyson M. Macrophage responsiveness to therapeutic ultrasound. Ultrasound Med Biol. 1990;16(8):809–16. https://doi.org/10.1016/0301-5629(90)90045-E.

    Article  CAS  PubMed  Google Scholar 

  35. Nussbaum E. The influence of ultrasound on healing tissues. J Hand Ther. 1998;11(2):140–7. https://doi.org/10.1016/S0894-1130(98)80012-4.

    Article  CAS  PubMed  Google Scholar 

  36. Harvey W, Dyson M, Pond JB, Grahame R. The stimulation of protein synthesis in human fibroblasts by therapeutic ultrasound. Rheumatol Rehabil. 1975;14(4):237. https://doi.org/10.1093/rheumatology/14.4.237.

    Article  CAS  PubMed  Google Scholar 

  37. Enwemeka CS, Rodriguez O, Mendosa S. The biomechanical effects of low-intensity ultrasound on healing tendons. Ultrasound Med Biol. 1990;16(8):801–7. https://doi.org/10.1016/0301-5629(90)90044-D.

    Article  CAS  PubMed  Google Scholar 

  38. Warden SJ, Avin KG, Beck EM, DeWolf ME, Hagemeier MA, Martin KM. Low-intensity pulsed ultrasound accelerates and a nonsteroidal anti-inflammatory drug delays knee ligament healing. Am J Sports Med. 2006;34(7):1094–102. https://doi.org/10.1177/0363546505286139.

    Article  PubMed  Google Scholar 

  39. Tsai WC, Pang JH, Hsu CC, Chu NK, Lin MS, Hu CF. Ultrasound stimulation of types I and III collagen expression of tendon cell and upregulation of transforming growth factor beta. J Orthop Res. 2006;24(6):1310–6. https://doi.org/10.1002/jor.20130.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Scalise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scalise, A., Pirro, O., Foggetti, C., Pierangeli, M., Torresetti, M., Di Benedetto, G.M. (2023). Ultrasound in Wound Care. In: Maruccia, M., Papa, G., Ricci, E., Giudice, G. (eds) Pearls and Pitfalls in Skin Ulcer Management. Springer, Cham. https://doi.org/10.1007/978-3-031-45453-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45453-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45452-3

  • Online ISBN: 978-3-031-45453-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics