Skip to main content

Eigenstates in the Many Interacting Worlds Approach: Focus on 2D Ground States

  • Chapter
  • First Online:
Physics and the Nature of Reality

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 215))

  • 273 Accesses

Abstract

The Many-Interacting-Worlds (MIW) approach to a quantum theory without wave functions proposed in [8] leads naturally to numerical integrators of the Schrödinger equation on comoving grids. As yet, little is known about concrete MIW models for more than one spatial dimension and/or more than one particle. In honour of Detlef Dürr, we report on a further development of the MIW approach to treat arbitrary degrees of freedom and provide a numerical proof of concept for ground states in 2d. The latter is part of a systematic numerical study [22] that includes also 1d ground and excited states. With this step towards the treatment of higher degrees of freedom we hope to stimulate their further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.H. Lieb, R. Seiringer, J.P. Solovej, and J. Yngvason, The Mathematics of the Bose Gas and its Condensation. Oberwolfach Seminars, Vol. 34, Birkhäuser (2005)

    Google Scholar 

  2. R.E. Wyatt, Quantum Dynamics with Trajectories (Springer, New York, 2005)

    Google Scholar 

  3. P. K. Chatteraj, Quantum Trajectories (CRC Press, 2010)

    Google Scholar 

  4. D.-A. Deckert, D. Dürr, P. Pickl, Quantum dynamics with bohmian trajectories. J. Phys. Chem. A 111, 10325 (2007)

    Article  Google Scholar 

  5. D. Duerr, S. Teufel, Bohmian Mechanics: The Physics and Mathematics of Quantum Theory (Springer, Heidelberg 2009)

    Google Scholar 

  6. A.S. Sanz, S. Miret-Artés, Quantum mechanics with trajectories, in A Trajectory Description of Quantum Processes. I. Fundamentals. Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2012), pp. 187–230

    Google Scholar 

  7. A. Benseny, G. Albareda, Á.S. Sanz, J. Mompart, X. Oriols, Applied bohmian mechanics. Eur. Phys. J. D 68(10), 286 (2014)

    Article  ADS  Google Scholar 

  8. M.J.W. Hall, D.-A. Deckert, H.M. Wiseman, Quantum phenomena modeled by interactions between many classical worlds. Phys. Rev. X 4, 041013 (2014)

    Google Scholar 

  9. M. Ghadimi, M.J.W. Hall, H.M. Wiseman, Nonlocality in bell’s theorem, in bohm’s theory, and in many interacting worlds theorising. Entropy 20, 567 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Holland, Computing the wavefunction from trajectories: particle and wave pictures in quantum mechanics and their relation. Ann. Phys. 315, 505 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. B. Poirier, Bohmian mechanics without pilot waves. Chem. Phys. 370, 4 (2010)

    Article  Google Scholar 

  12. G. Parlant, Y.C. Ou, K. Park, B. Poirier, Classical-like trajectory simulations for accurate computation of quantum reactive scattering probabilities. Computat. Theoret. Chem. 990, 3 (2012)

    Article  Google Scholar 

  13. J. Schiff, B. Poirier, Quantum mechanics without wavefunctions. J. Chem. Phys. 136, 031102 (2012)

    Article  ADS  Google Scholar 

  14. C. Sebens, Quantum mechanics as classical physics. Philos. Sci. 82(2), 266–291 (2015)

    Article  MathSciNet  Google Scholar 

  15. K.J. Boström, Quantum mechanics as a deterministic theory of a continuum of worlds. Quantum Stud.: Math. Found. 2, 315 (2015)

    Google Scholar 

  16. L. Smolin, Quantum mechanics and the principle of maximal variety. Found. Phys. 46, 736 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. P. Roser, M.T. Scoggins, Non-quantum behaviors of configuration-space density formulations of quantum mechanics. arXiv:2303.04959

  18. K. Berndl, M. Daumer, D. Dürr, S. Goldstein, N. Zanghì, A survey of bohmian mechanics. Il Nuovo Cimento B (1971–1996) 110, 737 (1995)

    Google Scholar 

  19. I.W. McKeague, B. Levin, Convergence of empirical distributions in an interpretation of quantum mechanics. Ann. Appl. Probab. 26, 2540–2555 (2016)

    Article  MathSciNet  Google Scholar 

  20. H. Herrmann, Finding stationary states by interacting many worlds. Master Thesis, Mathematical Institute of the LMU Munich (2016)

    Google Scholar 

  21. H. Herrmann, D.-A. Deckert, Eigenstates in the many interacting worlds approach, GitLab repository (2023). https://gitlab.com/dirk-deckert-lmu/eigenstates-in-the-Many-Interacting-Worlds-approach

  22. H. Herrmann, M.J.W. Hall, H.M. Wiseman, D.-A. Deckert, Eigenstates in the many interacting worlds approach: ground states in 1D and 2D and excited states in 1D (long version). arXiv:1712.01918

  23. S. Sturniolo, Computational applications of the many-interacting-worlds interpretation of quantum mechanics. Phys. Rev. E 97, 053311 (2018)

    Article  ADS  Google Scholar 

  24. A.J. Izenman, Review papers: recent developments in nonparametric density estimation. J. Am. Stat. Assoc. 86, 205–224 (1991)

    MathSciNet  Google Scholar 

  25. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, 2nd edn. (Hoboken, New Jersey: Wiley, Inc, 2015)

    Google Scholar 

  26. I.S. Abramson, On bandwidth variation in kernel estimates-a square root law. Ann. Stat. 10, 1217–1223 (1982)

    Article  MathSciNet  Google Scholar 

  27. A. Elgammal, R. Duraiswami, L.S. Davis, Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1499–1504 (2003)

    Article  Google Scholar 

  28. J.A. De Loera, J. Rambaau, F. Santos, Triangulations. Algorithms and Computation in Mathematics, vol. 25 (Springer, Berlin, 2010)

    Google Scholar 

  29. Z.I. Botev, J.F. Grotowski, D.P. Kroese, Kernel density estimation via diffusion. Ann. Stat. 38(5), 2916–2957 (2010)

    Article  MathSciNet  Google Scholar 

  30. R. Courant, D. Hilbert, Methoden der mathematischen Physik (Springer, Berlin, 1924)

    Google Scholar 

  31. A. Ancona, B. Helffer, T. Hoffmann-Ostenhof, Nodal domain theorems a la courant. Doc. Math. 9, 283–299 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Ghadimi and T. Gould for valuable discussions. Furthermore, D.-A.D. and H.H. would like to thank Griffith University for its hospitality, while M.J.W.H. and H.M.W. likewise thank the Ludwig Maximilian University. This work was partially funded by the Elite Network of Bavaria through the Junior Research Group “Interaction between Light and Matter” and by FQXi Grant FQXi-RFP-1519. Finally, since this is H.M.W.’s only contribution to this volume, I (H.M.W.) would like to take this opportunity to thank Detlef Dürr for being a source of wisdom and inspiration over many years, and for being a powerful friend and colleague for the unfortunately fewer years that I knew him personally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk-André Deckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herrmann, H., Hall, M.J.W., Wiseman, H.M., Deckert, DA. (2024). Eigenstates in the Many Interacting Worlds Approach: Focus on 2D Ground States. In: Bassi, A., Goldstein, S., Tumulka, R., Zanghì, N. (eds) Physics and the Nature of Reality. Fundamental Theories of Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-031-45434-9_10

Download citation

Publish with us

Policies and ethics