Skip to main content

Pseudocapacitance in Double Perovskite Material

  • Chapter
  • First Online:
Pseudocapacitors

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Double perovskite materials (DPMs) with the formula of A2BB′O6 have gained much attention as supercapacitor materials due to their compositional characteristics that improve the properties of conventional perovskite structure ABO3 to gain higher electroactivity, conductivity, and faradic redox activity, in addition to their conventional structural stability. These advanced properties recently made DPMs promising materials for supercapacitor application, and they could show relatively high specific capacitance and specific energy density (Ed) at high specific power density (Pd). At the beginning of this chapter, the DPMs will be introduced in detail from a chemical perspective to address their chemical composition, common morphology, electrochemical characteristics, and the effect of oxygen intercalation on their electrochemical properties. Then, the electrochemical energy storage mechanism in DPMs will be discussed from the electrochemical interactions point of view, and the pseudocapacitive behavior will be explained through simple kinetics and thermodynamics concepts. After that, the recent developments in DPMs design and the correlation between the structural improvements and the change in the pseudocapacitance performance will be addressed. Finally, the pros and cons of using double perovskite as pseudocapacitive material will be discussed alongside future developments and directions in this type of pseudocapacitive material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Cao, J. Liang, X. Li, L. Yue, Q. Liu, S. Lu, A.M. Asiri, J. Hu, Y. Luo, X. Sun, Recent advances in perovskite oxides as electrode materials for supercapacitors. Chem. Commun. 57, 2343–2355 (2021)

    Article  CAS  Google Scholar 

  2. A.K. Tomar, A. Joshi, G. Singh, R.K. Sharma, Perovskite oxides as supercapacitive electrode: properties, design and recent advances. Coord. Chem. Rev. 431, 213680 (2021)

    Article  CAS  Google Scholar 

  3. P. Goel, S. Sundriyal, V. Shrivastav, S. Mishra, D.P. Dubal, K.H. Kim, A. Deep, Perovskite materials as superior and powerful platforms for energy conversion and storage applications. Nano Energy 80, 105552 (2021)

    Article  CAS  Google Scholar 

  4. C. Sun, J.A. Alonso, J. Bian, C.W. Sun, J.J. Bian, J.A. Alonso, Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv. Energy Mater. 11 (2021)

    Google Scholar 

  5. Y. Liu, Z. Wang, J.P.M. Veder, Z. Xu, Y. Zhong, W. Zhou, M.O. Tade, S. Wang, Z. Shao, Highly defective layered double perovskite oxide for efficient energy storage via reversible pseudocapacitive oxygen-anion intercalation. Adv. Energy Mater. 8, 1702604 (2018)

    Article  Google Scholar 

  6. C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5 (2019)

    Google Scholar 

  7. N. Setter, L.E. Cross, The contribution of structural disorder to diffuse phase transitions in ferroelectrics. J. Mater. Sci. 15, 2478–2482 (1980)

    Article  CAS  Google Scholar 

  8. X. Xu, Y. Zhong, Z. Shao, Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis. Trends Chem. 1, 410–424 (2019)

    Article  CAS  Google Scholar 

  9. E.G. Steward, H.P. Rooksby, IUCr Pseudo-cubic alkaline-earth tungstates and molybdates of the R3MX6 type. urn:issn:0365-110X 4, 503–507 (1951)

    Google Scholar 

  10. Q. Tang, X. Zhu, Half-metallic double perovskite oxides: recent developments and future perspectives. J. Mater. Chem. C 10, 15301–15338 (2022)

    Article  CAS  Google Scholar 

  11. H. Arandiyan, S.S. Mofarah, C.C. Sorrell, E. Doustkhah, B. Sajjadi, D. Hao, Y. Wang, H. Sun, B.J. Ni, M. Rezaei et al., Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chem. Soc. Rev. 50, 10116–10211 (2021)

    Google Scholar 

  12. T. Sato, S. Takagi, S. Deledda, B.C. Hauback, S.I. Orimo, Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds. Sci. Rep. 6, 1–10 (2016)

    Google Scholar 

  13. S. Vasala, M. Karppinen, A2B′B″O6 perovskites: a review. Prog. Solid State Chem. 43, 1–36 (2015)

    Article  CAS  Google Scholar 

  14. A. Muñoz, J.A. Alonso, M.T. Casais, M.J. Martínez-Lope, M.T. Fernández-Díaz, Crystal and magnetic structure of the complex oxides Sr2MnMoO6, Sr2MnWO6and Ca2MnWO6: a neutron diffraction study. J. Phys. Condens. Matter 14, 8817 (2002)

    Article  Google Scholar 

  15. Y. Liu, S.P. Jiang, Z. Shao, Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Mater. Today Adv. 7, 100072 (2020)

    Article  Google Scholar 

  16. Z. Wang, Y. Liu, Y. Chen, L. Yang, Y. Wang, M. Wei, A-site cation-ordered double perovskite PrBaCo2O5+δ oxide as an anion-inserted pseudocapacitor electrode with outstanding stability. J. Alloys Compd. 810, 151830 (2019)

    Article  CAS  Google Scholar 

  17. L. Zeng, L. Cui, C. Wang, W. Guo, C. Gong, In-situ modified the surface of Pt-doped perovskite catalyst for soot oxidation. J. Hazard. Mater. 383, 121210 (2020)

    Article  CAS  Google Scholar 

  18. C. Bharti, T.P. Sinha, Dielectric properties of rare earth double perovskite oxide Sr2CeSbO 6. Solid State Sci. 12, 498–502 (2010)

    Article  CAS  Google Scholar 

  19. R. Jose, J. Konopka, X. Yang, A. Konopka, M. Ishikawa, J. Koshy, Crystal structure and dielectric properties of a new complex perovskite oxide Ba2LaSbO6. Appl. Phys. A Mater. Sci. Process. 79, 2041–2047 (2004)

    Article  CAS  Google Scholar 

  20. J.G. Bednor, K.A. Muller, Possible high T superconductivity in the Ba-La-Cu-O system. Z. Phys. B Condens. Matter 64, 189–193 (1986)

    Google Scholar 

  21. L.C.C.B. Oliveira, R. Venâncio, P.V.F. de Azevedo, C.G. Anchieta, T.C.M. Nepel, C.B. Rodella, H. Zanin, G. Doubek, Reviewing perovskite oxide sites influence on electrocatalytic reactions for high energy density devices. J. Energy Chem. 81, 1–19 (2023)

    Google Scholar 

  22. H. Kato, T. Okuda, Y. Okimoto, Y. Tomioka, K. Oikawa, T. Kamiyama, Y. Tokura, Structural and electronic properties of the ordered double perovskites A2MReO6 (A = Sr, Ca; M = Mg, Sc, Cr, Mn, Fe, Co, Ni, Zn). Phys. Rev. B Condens. Matter Mater. Phys. 69 (2004)

    Google Scholar 

  23. Q. Tang, X. Zhu, Half-metallic double perovskite oxides: recent developments and future perspectives. J. Mater. Chem. C (2022)

    Google Scholar 

  24. C. Li, Z. Yu, H. Liu, K. Chen, High surface area LaMnO3 nanoparticles enhancing electrochemical catalytic activity for rechargeable lithium-air batteries. J. Phys. Chem. Solids 113, 151–156 (2018)

    Article  CAS  Google Scholar 

  25. D. Liu, M. Chen, X. Du, H. Ai, K. Ho Lo, S. Wang, S. Chen, G. Xing, X. Wang, H. Pan et al., Development of electrocatalysts for efficient nitrogen reduction reaction under ambient conditions. Adv. Funct. Mater. 31, 2008983 (2021)

    Google Scholar 

  26. M.A. Bavio, J.E. Tasca, G.G. Acosta, M.F. Ponce, R.O. Fuentes, A. Visintin, Study of double perovskite La2B(II)MnO6 (B: Ni Co, Cu) as electrode materials for energy storage. J. Solid State Electrochem. 24, 699–710 (2020)

    Article  CAS  Google Scholar 

  27. A. Shereef, P.A. Aleena, J. Kunjumon, A.K. Jose, S.A. Thomas, M. Tomy, T.S. Xavier, S. Hussain, D. Sajan, Third-order nonlinear optical properties and electrochemical performance of La2CoMnO6 double perovskite. Mater. Sci. Eng. B 289, 116262 (2023)

    Article  CAS  Google Scholar 

  28. M. Devi, D. Nagpal, A. Vasishth, A. Kumar, A. Kumar, Structural and energy storage properties of hydrothermally synthesized Y2MnCoO6 double perovskite. Phys. Status Solidi 220, 2200444 (2023)

    Article  CAS  Google Scholar 

  29. M. Alam, K. Karmakar, M. Pal, K. Mandal, Electrochemical supercapacitor based on double perovskite Y2NiMnO6 nanowires. RSC Adv. 6, 114722–114726 (2016)

    Article  CAS  Google Scholar 

  30. M.B. Hanif, S. Rauf, M. Motola, Z.U.D. Babar, C.J. Li, C.X. Li, Recent progress of perovskite-based electrolyte materials for solid oxide fuel cells and performance optimizing strategies for energy storage applications. Mater. Res. Bull. 146, 111612 (2022)

    Article  CAS  Google Scholar 

  31. A.K. Tomar, A. Joshi, S. Atri, G. Singh, R.K. Sharma, Zero-dimensional ordered Sr2CoMoO6-δ double perovskite as high-rate anion intercalation pseudocapacitance. ACS Appl. Mater. Interfaces 12, 15128–15137 (2020)

    Article  CAS  Google Scholar 

  32. R.K. Muddelwar, J. Pani, A.B. Lad, K.U. Kumar, V.M. Gaikwad, H. Borkar, Pr2CrMnO6 double perovskite as new electrode material for electrochemical energy storage. Mater. Chem. Phys. 302, 127726 (2023)

    Article  CAS  Google Scholar 

  33. Y.-B. Wu, B. Jun, W. Bin-Bin, Preparation and supercapacitor properties of double-perovskite La2CoNiO6 inorganic nanofibers. Acta Phys. Chim. Sin. 31, 315–321 (2015)

    Google Scholar 

  34. Z. Meng, J. Xu, P. Yu, X. Hu, Y. Wu, Q. Zhang, Y. Li, L. Qiao, Y. Zeng, H. Tian, Double perovskite La2CoMnO6 hollow spheres prepared by template impregnation for high-performance supercapacitors. Chem. Eng. J. 400, 125966 (2020)

    Article  CAS  Google Scholar 

  35. S. Yagi, I. Yamada, H. Tsukasaki, A. Seno, M. Murakami, H. Fujii, H. Chen, N. Umezawa, H. Abe, N. Nishiyama et al., Covalency-reinforced oxygen evolution reaction catalyst. Nat. Commun. 6 (2015)

    Google Scholar 

  36. J.T. Mefford, X. Rong, A.M. Abakumov, W.G. Hardin, S. Dai, A.M. Kolpak, K.P. Johnston, K.J. Stevenson, Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 7, 1–11 (2016)

    Google Scholar 

  37. G. Kim, S. Wang, A.J. Jacobson, L. Reimus, P. Brodersen, C.A. Mims, Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J. Mater. Chem. 17, 2500–2505 (2007)

    Article  CAS  Google Scholar 

  38. S. Zhong, Y. Chen, L. Yang, Y. Liu, X. Chen, C. Wang, Ni-doped perovskite PrBaCo2O5+δ as supercapacitor electrode with enhanced electrochemical performance. Mater. Lett. 297, 130013 (2021)

    Article  CAS  Google Scholar 

  39. A. Aguadero, D. Pérez-Coll, J.A. Alonso, S.J. Skinner, J. Kilner, A new family of mo-doped school 3-delta; Perovskites for application in reversible solid-state electrochemical cells. Chem. Mater. 24, 2655–2663 (2012)

    Article  CAS  Google Scholar 

  40. Z. Xu, Y. Liu, W. Zhou, M.O. Tade, Z. Shao, B-site cation-ordered double-perovskite oxide as an outstanding electrode material for supercapacitive energy storage based on the anion intercalation mechanism. ACS Appl. Mater. Interfaces 10, 9415–9423 (2018)

    Article  CAS  Google Scholar 

  41. A. Kumar, A. Kumar, Electrochemical behavior of oxygen-deficient double perovskite, Ba2FeCoO6-δ, synthesized by facile wet chemical process. Ceram. Int. 45, 14105–14110 (2019)

    Article  CAS  Google Scholar 

  42. Y. Liu, Z. Wang, Y. Zhong, X. Xu, J.P.M. Veder, M.R. Rowles, M. Saunders, R. Ran, Z. Shao, Activation-free supercapacitor electrode based on surface-modified Sr2CoMo1-xNixO6-δ perovskite. Chem. Eng. J. 390, 124645 (2020)

    Article  CAS  Google Scholar 

  43. A.K. Vats, N. Sangwan, J. Singh, A. Kumar, A. Kumar, Anion intercalation pseudocapacitance performance of oxygen-deficient double perovskite prepared via facile wet chemical route. Mater. Sci. Semicond. Process. 138, 106300 (2022)

    Article  CAS  Google Scholar 

  44. J. Singh, A. Kumar, U.K. Gautam, A. Kumar, Microstructure and electrochemical performance of La2ZnMnO6 nanoflakes synthesized by facile hydrothermal route. Appl. Phys. A Mater. Sci. Process. 126, 1–9 (2020)

    Article  Google Scholar 

  45. M. Rudra, H.S. Tripathi, A. Dutta, T.P. Sinha, Existence of nearest-neighbor and variable range hopping in Pr2ZnMnO6 oxygen-intercalated pseudocapacitor electrode. Mater. Chem. Phys. 258, 123907 (2021)

    Article  CAS  Google Scholar 

  46. F.N. Mansoorie, J. Singh, A. Kumar, Wet chemical synthesis and electrochemical performance of novel double perovskite Y2CuMnO6 nanocrystallites. Mater. Sci. Semicond. Process. 107, 104826 (2020)

    Article  CAS  Google Scholar 

  47. M. Mohan, N.P. Shetti, T.M. Aminabhavi, Perovskites: a new generation electrode materials for storage applications. J. Power. Sources 574, 233166 (2023)

    Article  CAS  Google Scholar 

  48. G.R. Monama, K.E. Ramohlola, E.I. Iwuoha, K.D. Modibane, Progress on perovskite materials for energy application. Results Chem. 4, 100321 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad G. Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omran, M.M., Abdel-Salam, A.I., Aman, D., Mohamed, S.G. (2024). Pseudocapacitance in Double Perovskite Material. In: Gupta, R.K. (eds) Pseudocapacitors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45430-1_8

Download citation

Publish with us

Policies and ethics