Skip to main content

Pseudocapacitance: Tuning Electrochemical Properties

  • Chapter
  • First Online:
Pseudocapacitors

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 228 Accesses

Abstract

Recently, advanced electrochemical energy storage technology has come to require both high energy and power densities. Pseudocapacitance originates from the charge transfer reaction across the electrochemical interface and depicts higher capacitance than capacitors and faster electrochemical kinetics than traditional batteries, providing the opportunity to fulfill this goal. However, due to the intrinsic poor electrical conductivity, or inadequate structural stability, the rate performance and cycling stability of pseudocapacitive materials are still unsatisfactory. Thus, various strategies have been proposed to tune the electrochemical performance of pseudocapacitive materials for achieving both high energy and power. In this chapter, we highlight some recent works in developing pseudocapacitive materials for electrochemical energy storage systems. By introducing the research advances of both “intrinsic” and “extrinsic” pseudocapacitive materials, tune strategies such as nanostructure design, doping, introducing oxygen vacancies, interlayer engineering, heterostructure engineering, etc., have been carefully discussed. We hope this work will be of directive significance for the design and fabrication of high-performance electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei, J. Lau, B. Dunn, Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020)

    Article  Google Scholar 

  2. S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D. Jiang, V. Presser, V. Augustyn, Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020)

    Article  CAS  Google Scholar 

  3. B.E. Conway, E. Gileadi, Kinetic theory of pseudocapacitance and electrode reactions at appreciable surface coverage. Trans. Faraday Soc. 58, 2493 (1962)

    Article  CAS  Google Scholar 

  4. Z. Gan, J. Yin, X. Xu, Y. Cheng, T. Yu, Nanostructure and advanced energy storage: elaborate material designs lead to high-rate pseudocapacitive ion storage. ACS Nano 16, 5131–5152 (2022)

    Article  CAS  Google Scholar 

  5. M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, I. Honma, Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129(23), 7444–7452 (2007)

    Article  CAS  Google Scholar 

  6. J.-M. Jeong, S.H. Park, H.J. Park, S.B. Jin, S.G. Son, J.-M. Moon, H. Suh, B.G. Choi, Alternative-ultrathin assembling of exfoliated manganese dioxide and nitrogen-doped carbon layers for high-mass loading supercapacitors with outstanding capacitance and impressive rate capability. Adv. Funct. Mater. 31, 2009632 (2021)

    Article  CAS  Google Scholar 

  7. Z. Peng, S. Li, Y. Huang, J. Guo, L. Tan, Y. Chen, Sodium-intercalated manganese oxides for achieving ultra-stable and fast charge storage kinetics in wide-voltage aqueous supercapacitors. Adv. Funct. Mater. 32, 2206539 (2022)

    Article  CAS  Google Scholar 

  8. J. Wang, W. Guo, Z. Liu, Q. Zhang, Engineering of self-aggregation-resistant MnO2 heterostructure with a built-in field for enhanced high-mass-loading energy storage. Adv. Energy Mater. 13, 2300224 (2023)

    Article  CAS  Google Scholar 

  9. M. Zukalova, M. Kalbac, L. Kavan, I. Exnar, M. Graetzel, Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17, 1248–1255 (2005)

    Article  CAS  Google Scholar 

  10. K. Lan, L. Liu, J.-Y. Zhang, R. Wang, L. Zu, Z. Lv, Q. Wei, D. Zhao, Precisely designed mesoscopic titania for high-volumetric-density pseudocapacitance. J. Am. Chem. Soc. 143, 14097–14105 (2021)

    Article  CAS  Google Scholar 

  11. H.-Y. Wang, H.-Y. Chen, Y.-Y. Hsu, U. Stimming, H.M. Chen, B. Liu, Modulation of crystal surface and lattice by doping: Achieving ultrafast metal-ion insertion in anatase TiO2. ACS Appl. Mater. Interfaces 8, 29186–29193 (2016)

    Article  CAS  Google Scholar 

  12. Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H.B. Wu, Y. Lu, Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11, 2952–2960 (2017)

    Article  CAS  Google Scholar 

  13. B. Reichman, A.J. Bard, The application of Nb2O5 as a cathode in nonaqueous lithium cells. J. Electrochem. Soc. 128, 344–346 (1981)

    Article  CAS  Google Scholar 

  14. R. Kodama, Y. Terada, I. Nakai, S. Komaba, N. Kumagai, Electrochemical and in situ XAFS-XRD investigation of Nb2O5 for rechargeable lithium batteries. J. Electrochem. Soc. 153, A583–A588 (2006)

    Article  CAS  Google Scholar 

  15. K. Brezesinski, J. Wang, J. Haetge, C. Reitz, S.O. Steinmueller, S.H. Tolbert, B.M. Smarsly, B. Dunn, T. Brezesinski, Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. J. Am. Chem. Soc. 132, 6982–6990 (2010)

    Article  CAS  Google Scholar 

  16. W. Bergh, H.N. Lokupitiya, N.A. Vest, B. Reid, S. Guldin, M. Stefk, Nanostructure dependence of T-Nb2O5 intercalation pseudocapacitance probed using tunable isomorphic architectures. Adv. Funct. Mater. 31, 2007826 (2021)

    Article  Google Scholar 

  17. S. Fu, Q. Yu, Z. Liu, P. Hu, Q. Chen, S. Feng, L. Mai, L. Zhou, Yolk-shell Nb2O5 microspheres as intercalation pseudocapacitive anode materials for high-energy Li-ion capacitors. J. Mater. Chem. A 7, 11234–11240 (2019)

    Article  CAS  Google Scholar 

  18. J. Liao, R. Tan, Z. Kuang, C. Cui, Z. Wei, X. Deng, Z. Yan, Y. Feng, F. Li, C. Wang, J. Ma, Controlling the morphology, size and phase of Nb2O5 crystals for high electrochemical performance. Chin. Chem. Lett. 29, 1785–1790 (2018)

    Google Scholar 

  19. M.Y. Song, N.R. Kim, H.J. Yoon, S.Y. Cho, H.-J. Jin, Y.S. Yun, Long-lasting Nb2O5-based nanocomposite materials for Li-ion storage. ACS Appl. Mater. Interfaces 9, 2267–2274 (2017)

    Article  CAS  Google Scholar 

  20. X. Meng, Z. Guan, J. Zhao, Z. Cai, S. Li, L. Bian, Y. Song, D. Guo, X. Liu, Lithium-pre-intercalated T-Nb2O5/graphene composite promoting pseudocapacitive performance for ultralong lifespan capacitors. Chem. Eng. J. 438, 135492 (2022)

    Article  CAS  Google Scholar 

  21. H.-S. Kim, J.B. Cook, S.H. Tolbert, B. Dunn, The development of pseudocapacitive properties in nanosized-MoO2. J. Electrochem. Soc. 162, A5083–A5090 (2015)

    Article  CAS  Google Scholar 

  22. J.B. Cook, H.-S. Kim, T.C. Lin, C.-H. Lai, B. Dunn, S.H. Tolbert, Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes. Adv. Energy Mater. 7, 1601283 (2017)

    Article  Google Scholar 

  23. C. Xia, Z. Lin, Y. Zhou, C. Zhao, H. Liang, P. Rozier, Z. Wang, H.N. Alshareef, Large intercalation pseudocapacitance in 2D VO2(B): Breaking through the kinetic barrier. Adv. Mater. 30, 1803594 (2018)

    Article  Google Scholar 

  24. Y. Gao, P. Hai, L. Liu, J. Yin, Z. Gan, W. Ai, C. Wu, Y. Cheng, X. Xu, Balanced crystallinity and nanostructure for SnS2 nanosheets through optimized calcination temperature toward enhanced pseudocapacitive Na+ storage. ACS Nano 16, 14745–14753 (2022)

    Article  CAS  Google Scholar 

  25. J. Dong, Y. He, Y. Jiang, S. Tan, Q. Wei, F. Xiong, Z. Chu, Q. An, L. Mai, Intercalation pseudocapacitance of FeVO4⋅nH2O nanowires anode for high-energy and high-power sodium-ion capacitor. Nano Energy 73, 104838 (2020)

    Article  CAS  Google Scholar 

  26. H.-S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, V. Ozolins, B. Dunn, Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 16, 454–460 (2017)

    Article  CAS  Google Scholar 

  27. S.S. Mofarah, E. Adabifiroozjaei, Y. Yao, P. Koshy, S. Lim, R. Webster, X. Liu, R.K. Nekouei, C. Cazorla, Z. Liu, Y. Wang, N. Lambropoulos, C.C. Sorrell, Proton-assisted creation of controllable volumetric oxygen vacancies in ultrathin CeO2-x for pseudocapacitive energy storage applications. Nat. Commun. 10, 2594 (2019)

    Article  Google Scholar 

  28. B. Liu, H. Zhang, C. Yuan, Q. Geng, Y. Li, J. Hu, Z. Lu, J. Xie, A. Hao, Y. Cao, Construction of oxygen vacancies and heterostructure in VO2-x/NC with enhanced reversible capacity, accelerated redox kinetics, and stable cycling life for sodium ion storage. J. Colloid. Interf. Sci. 646, 34–43 (2023)

    Article  CAS  Google Scholar 

  29. W. Du, Y. Zheng, X. Liu, J. Cheng, R.C.K. Reddy, A. Zeb, X. Lin, Y. Luo, Oxygen-enriched vacancy spinel MFe2O4/carbon (M = Ni, Mn, Co) derived from metal-organic frameworks toward boosting lithium storage. Chem. Eng. J. 451, 138626 (2023)

    Article  CAS  Google Scholar 

  30. N. Liu, X. Wu, L. Fan, S. Gong, Z. Guo, A. Chen, C. Zhao, Y. Mao, N. Zhang, K. Sun, Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Adv. Mater. 32, 1908420 (2020)

    Article  CAS  Google Scholar 

  31. K. Zhu, S. Wei, H. Shou, F. Shen, S. Chen, P. Zhang, C. Wang, Y. Cao, X. Guo, M. Luo, H. Zhang, B. Ye, X. Wu, L. He, L. Song, Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 12, 6878 (2021)

    Article  Google Scholar 

  32. X. Xu, Y. Qian, C. Wang, Z. Bai, C. Wang, M. Song, Y. Du, X. Xu, N. Wang, J. Yang, Y. Qian, S. Dou, Enhanced charge transfer and reaction kinetics of vanadium pentoxide for zinc storage via nitrogen interstitial doping. Chem. Eng. J. 451, 138770 (2023)

    Article  CAS  Google Scholar 

  33. N. Wang, X. Xu, T. Liao, Y. Du, Z. Bai, S. Dou, Boosting sodium storage of double-shell sodium titanate microspheres constructed from 2D ultrathin nanosheets via sulfur doping. Adv. Mater. 30, 1804157 (2018)

    Article  Google Scholar 

  34. S. Chandel, C. Wang, S.P. Singh, N. Wang, A.K. Rai, Significant enhancement in the electrochemical performances of a nanostructured sodium titanate anode by molybdenum doping for applications as sodium-ion batteries. ACS Appl. Nano Mater. 5, 18591–18602 (2022)

    Article  CAS  Google Scholar 

  35. X. Wang, K. Liu, J. Li, Y. Liu, M. Wang, H. Cui, Creation of an extrinsic pseudocapacitive material presenting extraordinary cycling-life with the battery-type material Co(OH)2 by S2− doping for application in supercapacitors. Chem. Eng. J. 451, 138969 (2023)

    Article  CAS  Google Scholar 

  36. C. Zhao, C. Yu, M. Zhang, Q. Sun, S. Li, M.N. Banis, X. Han, Q. Dong, J. Yang, G. Wang, X. Sun, J. Qiu, Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers. Nano Energy 41, 66–74 (2017)

    Article  CAS  Google Scholar 

  37. J. Lai, H. Zhu, X. Zhu, H. Koritala, Y. Wang, Interlayer-expanded V6O13·nH2O architecture constructed for an advanced rechargeable aqueous zinc-ion battery. ACS Appl. Energy Mater. 2, 1988–1996 (2019)

    Article  CAS  Google Scholar 

  38. Y. Li, Y. Liang, F.C.R. Hernandez, H.D. Yoo, Q. An, Y. Yao, Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 15, 453–461 (2015)

    Article  Google Scholar 

  39. J. Chao, L. Yang, H. Zhang, J. Liu, R. Hu, M. Zhu, Engineering layer structure of MoS2/polyaniline/graphene nanocomposites to achieve fast and reversible lithium storage for high energy density aqueous lithium-ion capacitors. J. Power. Sources 450, 227680 (2020)

    Article  CAS  Google Scholar 

  40. S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu, Y. Ren, H. Geng, Y. Yang, Q. Liu, C.C. Li, Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32, 2001113 (2020)

    Article  CAS  Google Scholar 

  41. Y. Xiao, X. Zhao, X. Wang, D. Su, S. Bai, W. Chen, S. Fang, L. Zhou, H.-M. Cheng, F. Li, A nanosheet array of Cu2Se intercalation compound with expanded interlayer space for sodium ion storage. Adv. Energy Mater. 10, 2000666 (2020)

    Article  CAS  Google Scholar 

  42. M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K.T. Mueller, L. Mai, J. Liu, J. Yan, Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 29, 1703725 (2017)

    Google Scholar 

  43. Y. Jiang, H. Xu, L. Ren, M. Ji, X. Shen, S. Li, Mn0.26V2O5·nH2O nanoribbons with fast ion diffusion channels and high electrical conductivity for intercalation pseudocapacitive Zn2+ storage, Energy Fuels 35, 17948–17955 (2021)

    Google Scholar 

  44. Q. Wei, Z. Jiang, S. Tan, Q. Li, L. Huang, M. Yan, L. Zhou, Q. An, L. Mai, Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage. ACS Appl. Mater. Interfaces 7, 18211–18217 (2015)

    Article  CAS  Google Scholar 

  45. Y. Jiang, D. Song, J. Wu, Z. Wang, S. Huang, Y. Xu, Z. Chen, B. Zhao, J. Zhang, Sandwich-like SnS2/Graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials. ACS Nano 13, 9100–9111 (2019)

    Article  CAS  Google Scholar 

  46. M. Yousaf, Y. Wang, Y. Chen, Z. Wang, A. Firdous, Z. Ali, N. Mahmood, R. Zou, S. Guo, R.P. Han, A 3D trilayered CNT/MoSe2/C heterostructure with an Eexpanded MoSe2 interlayer spacing for an efficient sodium storage. Adv. Energy Mater. 9, 1900567 (2019)

    Google Scholar 

  47. J. Yuan, M. Qiu, X. Hu, Y. Liu, G. Zhong, H. Zhan, Z. Wen, Pseudocapacitive vanadium nitride quantum dots modifed one-dimensional carbon cages enable highly kinetics-compatible sodium ion capacitors. ACS Nano 16, 14807–14818 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzhou Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, J., Zhang, A., Zhang, Q., Yuan, C. (2024). Pseudocapacitance: Tuning Electrochemical Properties. In: Gupta, R.K. (eds) Pseudocapacitors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45430-1_5

Download citation

Publish with us

Policies and ethics