Skip to main content

Emerging Pseudocapaciting Materials

  • Chapter
  • First Online:
Pseudocapacitors

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Current environmental problems are largely the consequence of the recent growing trends in global energy demand and its utilization, which ultimately resulted in the motivation to develop new routes to explore new energy materials. In response to this, supercapacitors have drawn much attention due to their relatively high power densities and long life cycles as compared to other energy devices. Supercapaciting materials are roughly divided into electric double-layer capaciting materials and pseudocapaciting materials. Between them, pseudocapacitor materials are attractive due to their high specific capacitance, which can lead to increased energy densities in the supercapacitors. In this chapter, we discuss the different types of pseudocapaciting materials, including pseudocapaciting nanoparticles developed based on the glycerate template method, composite pseudocapaciting materials consisting of nanosheets and/or nanoplates, negative electrode pseudocapaciting materials, and other emerging pseudocapaciting materials. In each category, the material selection, structural variations, and electrochemical performances of the pseudocapaciting materials will be addressed, respectively. Not only the state of art progress of the field is presented, but also the future development trends are discussed accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Bhojane, Recent advances and fundamentals of pseudocapacitors: materials, mechanism, and its understanding. J. Energy Storage 45, 103654 (2022)

    Article  Google Scholar 

  2. N.N. Loganathan, V. Perumal, B.R. Pandian, R. Atchudan, T.N.J.I. Edison, M. Ovinis, Recent studies on polymeric materials for supercapacitor development. J. Energy Storage 49, 104149 (2022)

    Article  Google Scholar 

  3. R. Zhao, L. Zhang, C. Wang, L. Yin, Tetramethyl ammonium cation intercalated layered birnessite manganese dioxide for high-performance intercalation pseudocapacitor. J. Power Sources 353, 77–84 (2017)

    Article  CAS  Google Scholar 

  4. M. Ahmad, I. Hussain, T. Nawaz, Y. Li, X. Chen, S. Ali, M. Imran, X. Ma, K. Zhang, Comparative study of ternary metal chalcogenides (MX; M= Zn–Co–Ni; X= S, Se, Te): formation process, charge storage mechanism and hybrid supercapacitor. J. Power Sources 534, 231414 (2022)

    Article  CAS  Google Scholar 

  5. J.Y. Wang, Y. Cui, D. Wang, Design of hollow nanostructures for energy storage, conversion and production. Adv. Mater. 31(38), 1801993 (2019)

    Article  Google Scholar 

  6. X. Chen, Y. Li, C. Li, H. Cao, C. Wang, S. Cheng, Q. Zhang, A novel strategy of multi-element nanocomposite synthesis for high performance ZnO-CoSe2 supercapacitor material development. Chin. J. Chem. 39(9), 2441–2450 (2021)

    Article  CAS  Google Scholar 

  7. C. Wei, C. Cheng, K. Wang, X. Li, H. Xiao, Q. Yao, Hierarchical Ni–Co–Mn hydroxide hollow architectures as high-performance electrodes for electrochemical energy storage. RSC Adv. 11(25), 15258–15263 (2021)

    Article  CAS  Google Scholar 

  8. Z. Liu, F. Teng, C. Yuan, Z. Ul Abideen, W. Gu, Z. Liu, Highly uniform MnCo2O4 hollow spheres-based all-solid-state asymmetric micro-supercapacitor via a simple metal-glycerate precursor approach. Energ. Technol. 7(9), 1900314 (2019)

    Article  Google Scholar 

  9. M. Amiri, S.S.H. Davarani, S.K. Kaverlavani, S.E. Moosavifard, M. Shamsipur, Construction of hierarchical nanoporous CuCo2V2O8 hollow spheres as a novel electrode material for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 527, 146855 (2020)

    Article  CAS  Google Scholar 

  10. Q. Zhang, Q. Zang, Q. Shi, Z. Xiao, K.-P. Wang, L. Zong, L. Wang, Formation of V6O11@Ni(OH)2/NiOOH hollow double-shell nanoflowers for the excellent cycle stability of supercapacitors. Dalton Trans. 50(10), 3693–3700 (2021)

    Article  CAS  Google Scholar 

  11. X. Yang, X. Chen, H. Cao, C. Li, L. Wang, Y. Wu, C. Wang, Y. Li, Rational synthesis of Cu7Se4-CuxCo1-xSe2 double-shell hollow nanospheres for high performance supercapacitors. J. Power Sources 480, 228741 (2020)

    Article  CAS  Google Scholar 

  12. C. Cheng, C. Wei, Y. He, L. Liu, J. Hu, W. Du, Etching strategy synthesis of hierarchical Ni-Mn hydroxide hollow spheres for supercapacitors. J. Energy Storage 33, 102105 (2021)

    Article  Google Scholar 

  13. Z. Chai, Z. Wang, J. Wang, X. Li, H. Guo, Potentiostatic deposition of nickel cobalt sulfide nanosheet arrays as binder-free electrode for high-performance pseudocapacitor. Ceram. Int. 44(13), 15778–15784 (2018)

    Article  CAS  Google Scholar 

  14. X. Zhang, W. Lu, Y. Tian, S. Yang, Q. Zhang, D. Lei, Y. Zhao, Nanosheet-assembled NiCo-LDH hollow spheres as high-performance electrodes for supercapacitors. J. Colloid Interface Sci. 606, 1120–1127 (2022)

    Article  CAS  Google Scholar 

  15. S. Islam, M.M. Mia, S.S. Shah, S. Naher, M.N. Shaikh, M.A. Aziz, A.J.S. Ahammad, Recent advancements in electrochemical deposition of metal-based electrode materials for electrochemical supercapacitors. Chem. Rec. 22(7), e202200013 (2022)

    Article  CAS  Google Scholar 

  16. M.S. Javed, A. Mateen, I. Hussain, S. Ali, S. Asim, A. Ahmad, E. Tag Eldin, M.A. Bajaber, T. Najam, W. Han, The quest for negative electrode materials for Supercapacitors: 2D materials as a promising family. Chem. Eng. J. 452, 139455 (2023)

    Google Scholar 

  17. R. Barik, P.P. Ingole, Challenges and prospects of metal sulfide materials for supercapacitors. Curr. Opin. Electrochem. 21, 327–334 (2020)

    Article  CAS  Google Scholar 

  18. V. Sharma, S.J. Kim, N.H. Kim, J.H. Lee, All-solid-state asymmetric supercapacitor with MWCNT-based hollow NiCo2O4 positive electrode and porous Cu2WS4 negative electrode. Chem. Eng. J. 415, 128188 (2021)

    Article  CAS  Google Scholar 

  19. M.S. Javed, T. Najam, M. Sajjad, S.S.A. Shah, I. Hussain, M. Idrees, M. Imran, M.A. Assiri, S.H. Siyal, Design and fabrication of highly porous 2D bimetallic sulfide ZnS/FeS composite nanosheets as an advanced negative electrode material for supercapacitors. Energy Fuels 35(18), 15185–15191 (2021)

    Article  CAS  Google Scholar 

  20. Y. Tan, L. Meng, Y. Wang, W. Dong, L. Kong, L. Kang, F. Ran, Negative electrode materials of molybdenum nitride/N-doped carbon nano-fiber via electrospinning method for high-performance supercapacitors. Electrochim. Acta 277, 41–49 (2018)

    Article  CAS  Google Scholar 

  21. A. Ramadoss, A. Tripathy, A. Mohanty, N. Swain, G.S. Kaliaraj, S.Z. Noby, K. Kirubavathi, K. Selvaraju, Binder-free TiN/graphite based thin film negative electrode for flexible energy storage devices. Vacuum 211, 111848 (2023)

    Article  CAS  Google Scholar 

  22. X. Gao, P. Wang, Z. Pan, J.P. Claverie, J. Wang, Recent progress in two-dimensional layered double hydroxides and their derivatives for supercapacitors. Chemsuschem 13(6), 1226–1254 (2020)

    Article  CAS  Google Scholar 

  23. L. Li, J. Fu, K.S. Hui, K.N. Hui, Y.-R. Cho, Controllable preparation of 2D nickel aluminum layered double hydroxide nanoplates for high-performance supercapacitors. J. Mater. Sci.: Mater. Electron. 29(20), 17493–17502 (2018)

    CAS  Google Scholar 

  24. W. Liang, I. Zhitomirsky, Zn-Fe double hydroxide-carbon nanotube anodes for asymmetric supercapacitors. Front. Mater. 7, 137 (2020)

    Article  Google Scholar 

  25. Q. Liu, J. Qiu, C. Yang, L. Zang, G. Zhang, E. Sakai, H. Wu, S. Guo, Robust quasi-solid-state integrated asymmetric flexible supercapacitors with interchangeable positive and negative electrode based on all-conducting-polymer electrodes. J. Alloy. Compd. 887, 161362 (2021)

    Article  CAS  Google Scholar 

  26. C. Rogier, G. Pognon, C. Galindo, G.T.M. Nguyen, C. Vancaeyzeele, P.-H. Aubert, MoO3–carbon nanotube negative electrode designed for a fully hybrid asymmetric metal oxide-based pseudocapacitor operating in an organic electrolyte. ACS Appl. Energy Mater. 5(8), 9361–9372 (2022)

    Article  CAS  Google Scholar 

  27. M.M. Baig, I.H. Gul, S.M. Baig, F. Shahzad, 2D MXenes: synthesis, properties, and electrochemical energy storage for supercapacitors—a review. J. Electroanal. Chem. 904, 115920 (2022)

    Article  CAS  Google Scholar 

  28. D.S. Patil, S.A. Pawar, J.C. Shin, H.J. Kim, Layered double hydroxide based on ZnCo@NiCo- nano-architecture on 3D graphene scaffold as an efficient pseudocapacitor. J. Power Sources 435, 226812 (2019)

    Article  CAS  Google Scholar 

  29. Y. He, D. Liu, H. Zhao, J. Wang, Y. Sui, J. Qi, Z. Chen, P. Zhang, C. Chen, D. Zhuang, Carbon-coated NiMn layered double hydroxides/Ni3S2 nanocomposite for high performance supercapacitors. J. Energy Storage 41, 103003 (2021)

    Article  Google Scholar 

  30. S. Alam, M.I.K. Fizza Fiaz, M.Z. Iqbal, F. Alam, Z. Ahmad, H.H. Hegazy, Advancements in asymmetric supercapacitors: Material selection, mechanisms, and breakthroughs with metallic oxides, sulfides, and phosphates. J. Energy Storage 72, 108208 (2023)

    Google Scholar 

  31. X. Zhang, N. Shang, S. Gao, C. Wang, Y. Gao, Z. Wang, Surfactant assisted self-assembly of NiCo phosphate with superior electrochemical performance for supercapacitor. Appl. Surf. Sci. 483, 529–535 (2019)

    Article  CAS  Google Scholar 

  32. R. Yadav, O. Zabihi, S. Fakhrhoseini, H.A. Nazarloo, A. Kiziltas, P. Blanchard, M. Naebe, Lignin derived carbon fiber and nanofiber: manufacturing and applications. Compos. B Eng. 255, 110613 (2023)

    Article  CAS  Google Scholar 

  33. H.Y. Jung, J.S. Lee, H.T. Han, J. Jung, K. Eom, J.T. Lee, Lignin-based materials for sustainable rechargeable batteries. Polymers 14(4), 673 (2022)

    Article  CAS  Google Scholar 

  34. S. Satpathy, N.K. Misra, V. Goyal, S. Das, V. Sharma, S. Ali, An AI-based newly developed analytical formulation for discharging behavior of supercapacitors with the integration of a review of supercapacitor challenges and advancement using quantum dots. Symmetry-Basel 15, 844 (2023)

    Article  Google Scholar 

  35. S. Saha, P. Samanta, N. Murmu, T. Kuila, A review on the heterostructure nanomaterials for supercapacitor application. J. Energy Storage 17, 181–202 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (21875066); the Shanghai Leading Academic Discipline Project (B502), and the Shanghai Key Laboratory Project (08DZ2230500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdullah, M., Jiang, W., Chen, X., Xu, S. (2024). Emerging Pseudocapaciting Materials. In: Gupta, R.K. (eds) Pseudocapacitors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45430-1_4

Download citation

Publish with us

Policies and ethics