Skip to main content

Pseudocapacitance: Mechanism and Characteristics

  • Chapter
  • First Online:
Pseudocapacitors

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 276 Accesses

Abstract

Pseudocapacitance is a mechanism of charge storage in electrochemical devices, which has the capability of delivering higher energy density than conventional electrochemical double-layer capacitance and higher power density than batteries. In contrast to electric double-layer capacitors (EDLC) where charge storage is mainly due to the electrostatic interaction of ions in the electrolyte with the electrode, in pseudocapacitors charge storage between the electrode–electrolyte interface is associated with a highly reversible redox reaction or intercalation. Though by definition pseudocapacitors involve faradic processes, they are largely different from faradic processes that occur in batteries. With extensive research and development of nanoscale materials, which give different electrochemical capacitive signatures for varying particle size, the definition of pseudocapacitance is highly misinterpreted and often a battery-type material is reported as pseudocapacitive material, misreporting the capacitance to exaggerated values. There is a lack of understanding among the electrochemical research community in differentiating the pseudocapacitive process from others. This chapter aims to provide a comprehensive note on understanding the fundamentals of pseudocapacitance, its origin, and different type of pseudocapacitive charge storage mechanisms. The electrochemical characteristics of pseudocapacitive along with that of EDLC and battery-type material are discussed to help the reader understand the differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.R. Chodankar, H.D. Pham, A.K. Nanjundan, J.F.S. Fernando, K. Jayaramulu, D. Golberg, Y.K. Han, D.B. Dubal, True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small 16(37), 2002806 (2020)

    Article  CAS  Google Scholar 

  2. J.W. Long, D. Bélanger, T. Brousse, W. Sugimoto, M.B. Sassin, O. Crosnier, Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes. MRS Bull. 36(7), 513–522 (2011)

    Article  CAS  Google Scholar 

  3. S. Trasatti, G. Buzzanca, Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour. J. Electroanal. Chem. Interfacial Electrochem. 29(2), A1–A5 (1971)

    Article  Google Scholar 

  4. B. E. Conway, Electrochemical Supercapacitors (Springer US, Boston, MA, 1999)

    Google Scholar 

  5. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)

    Article  CAS  Google Scholar 

  6. Y. Liu, S.P. Jiang, Z. Shao, Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Mater. Today Adv. 7, 100072 (2020)

    Article  Google Scholar 

  7. U. Schmidt, S. Vinzelberg, G. Staikov, Pb UPD on Ag(100) and Au(100)—2D phase formation studied by in situ STM. Surf. Sci. 348(3), 261–279 (1996)

    Article  CAS  Google Scholar 

  8. V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Torbet, H.D. Abruna, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013)

    Article  CAS  Google Scholar 

  9. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211(1979, 2014)

    Google Scholar 

  10. S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhang, D. Jiang, V. Presser, V. Augustyn, Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120(14), 6738–6782 (2020)

    Article  CAS  Google Scholar 

  11. A. Rajapriya, S. Keerthana, N. Ponpandian, C.M. Hussain, M.B. Ahamed, Smart Supercapacitors—Fundamental Understanding of Charge Storage Mechanism (Elsevier, 2023)

    Google Scholar 

  12. G.Z. Chen, Linear and non-linear pseudocapacitances with or without diffusion control. Prog. Nat. Sci.: Mater. Int. 31(6), 792–800 (2021)

    Article  CAS  Google Scholar 

  13. A.K. Shukla, S. Sampath, K. Vijayamohanan, Electrochemical supercapacitors: energy storage beyond batteries. Curr. Sci. 79(12), 1656–1661 (2000)

    CAS  Google Scholar 

  14. B. E. Conway, The electrochemical behavior of ruthenium oxide (RuO2) as a material for electrochemical capacitors, in Electrochemical Supercapacitors (Springer, Boston, MA, US, 1999)

    Google Scholar 

  15. M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, I. Honma, Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129(23), 7444–7452 (2007)

    Google Scholar 

  16. Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019)

    Article  Google Scholar 

  17. J. Come et al., Electrochemical kinetics of nanostructured Nb 2 O 5 electrodes. J. Electrochem. Soc. 161(5), A718–A725 (2014)

    Article  CAS  Google Scholar 

  18. E. M. Gavilán-Arriazu, M.P. Mercer, O.A. Pinto, O.A. Oviedo, D.E. Barraco, H.E. Hoster, E.P.M. Leiva, Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: finiteness of diffusion versus electrode kinetics. J. Solid State Electrochem. 24(11–12), 3279–3287 (2020)

    Google Scholar 

  19. M. Zhou, F. Lu, X. Shen, W. Xia, H. He, X. Zeng, One-pot construction of three dimensional CoMoO4/Co3O4 hybrid nanostructures and their application in supercapacitors. J. Mater. Chem. A Mater. 3(42), 21201–21210 (2015)

    Article  CAS  Google Scholar 

  20. Y. Lan et al., Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale 10(25), 11775–11781 (2018)

    Article  CAS  Google Scholar 

  21. I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Facile ZnO-based nanomaterial and its fabrication as a supercapacitor electrode: synthesis, characterization and electrochemical studies. RSC Adv. 11(38), 23374–23384 (2021)

    Article  CAS  Google Scholar 

  22. T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, Y. Gogotsi, Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9(39), 1902007 (2019)

    Article  CAS  Google Scholar 

  23. J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO 2 (Anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007)

    Article  CAS  Google Scholar 

  24. H. Shao, Z. Lin, K. Xu, P.-L. Taberna, P. Simon, Electrochemical study of pseudocapacitive behavior of Ti3C2Tx MXene material in aqueous electrolytes. Energy Storage Mater. 18, 456–461 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ponpandian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srividhya, G., Ponpandian, N. (2024). Pseudocapacitance: Mechanism and Characteristics. In: Gupta, R.K. (eds) Pseudocapacitors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45430-1_3

Download citation

Publish with us

Policies and ethics