Skip to main content

Pseudocapacitance: Fundamentals to Advanced Applications

  • Chapter
  • First Online:
Pseudocapacitors

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 225 Accesses

Abstract

The electrochemical energy storage advancement requires the use of either high-power density (like batteries) or high-energy density (like electrochemical capacitors) devices. For both current and upcoming applications, materials that can give high energy densities as well as high power densities in a single package are in increased demand. The faradaic process of power involves surface or near-surface redox processes. It provides a way for doing so by employing high charge–discharge rates and high-power densities. The focus of this chapter is on the pseudocapacitive characteristics of transition metal oxides. Pseudocapacitance will be explained in length in this chapter before going over its electrochemical properties. The following section of this chapter will be a review of the most prominent pseudocapacitive elements found in both aqueous & non-aqueous electrolytes. Near the end, there is a full discussion of the key problems with pseudocapacitive materials and a look into the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Hao, B. Luo, X. Li, M. Jin, Y. Fang, Z. Tang, Y. Jia, M. Liang, A. Thomas, J. Yang, L. Zhi, Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors. Energy Environ. Sci. 5, 9747–9751 (2012)

    Article  CAS  Google Scholar 

  2. X. Hua, Z. Liu, M.G. Fischer, O. Borkiewicz, P.J. Chupas, K.W. Chapman, U. Steiner, P.G. Bruce, C.P. Grey, Lithiation thermodynamics and kinetics of the TiO2 (B) nanoparticles. J. Am. Chem. Soc. 139, 13330–13341 (2017)

    Article  CAS  Google Scholar 

  3. I. Hanghofer, B. Gadermaier, H.M.R. Wilkening, Fast rotational dynamics in argyrodite-type Li6PS5X (X: Cl, Br, I) as seen by 31P nuclear magnetic relaxation—on cation-anion coupled transport in thiophosphates. Chem. Mater. 31, 4591–4597 (2019)

    Article  CAS  Google Scholar 

  4. H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19, 291–312 (2009)

    Article  CAS  Google Scholar 

  5. H.L. Ferreira, R. Garde, G. Fulli, W. Kling, J.P. Lopes, Characterisation of electrical energy storage technologies. Energy 53, 288–298 (2013)

    Article  Google Scholar 

  6. M. Zhu, J. Park, A.M. Sastry, Fracture analysis of the cathode in li-ion batteries: a simulation study,.ECS Meet. Abstr. MA2012-01, 972–972 (2012)

    Google Scholar 

  7. J.R. Miller, A.F. Burke, Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface 17, 53–57 (2008)

    Article  CAS  Google Scholar 

  8. P. Miller, John R., Simon, Electrochemical capacitors for energy management. Science (80–), 5889, 651–652 (2008)

    Google Scholar 

  9. H. Gualous, H. Louahlia-Gualous, R. Gallay, A. Miraoui, Supercapacitor thermal modeling and characterization in transient state for industrial applications. IEEE Trans. Ind. Appl. 45, 1035–1044 (2009)

    Article  CAS  Google Scholar 

  10. H. Lv, Q. Pan, Y. Song, X.X. Liu, T. Liu, A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors. Nano-Micro Lett. 12 (2020)

    Google Scholar 

  11. X. Fan, B. Liu, J. Liu, J. Ding, X. Han, Y. Deng, X. Lv, Y. Xie, B. Chen, W. Hu, C. Zhong, Battery technologies for grid-level large-scale electrical energy storage. Trans. Tianjin Univ. 26, 92–103 (2020)

    Article  Google Scholar 

  12. N. Zaman, R.A. Malik, H. Alrobei, J. Kim, M. Latif, A. Hussain, A. Maqbool, R.A. Karim, M. Saleem, M.A. Rafiq, Z. Abbas, Structural and electrochemical analysis of decarburized graphene electrodes for supercapacitor applications. Crystals 10, 1–12 (2020)

    Article  Google Scholar 

  13. T. Brousse, D. Bélanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015)

    Article  CAS  Google Scholar 

  14. M.E. Abdelhamid, A.P. O’Mullane, G.A. Snook, Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage. RSC Adv. 5, 11611–11626 (2015)

    Article  CAS  Google Scholar 

  15. A.M. Bryan, L.M. Santino, Y. Lu, S. Acharya, J.M. D’Arcy, Conducting polymers for pseudocapacitive energy storage. Chem. Mater. 28, 5989–5998 (2016)

    Article  CAS  Google Scholar 

  16. F.Z. Amir, V.H. Pham, J.H. Dickerson, Facile synthesis of ultra-small ruthenium oxide nanoparticles anchored on reduced graphene oxide nanosheets for high-performance supercapacitors. RSC Adv. 5, 67638–67645 (2015)

    Article  CAS  Google Scholar 

  17. J.S. Seenath, D. Pech, D. Rochefort, Investigation of protic ionic liquid electrolytes for porous RuO2 micro-supercapacitors. J. Power. Sources 548, 232040 (2022)

    Article  CAS  Google Scholar 

  18. Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8 (2018)

    Google Scholar 

  19. Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2, 30–37 (2019)

    Article  Google Scholar 

  20. Q. Gui, L. Wu, Y. Li, J. Liu, Scalable wire-type asymmetric pseudocapacitor achieving high volumetric energy/power densities and ultralong cycling stability of 100,000 times. Adv. Sci. 6, 1802067 (2019)

    Article  Google Scholar 

  21. Q. Wei, R.H. DeBlock, D.M. Butts, C. Choi, B. Dunn, Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage. Energy Environ. Mater. 3, 221–234 (2020)

    Article  CAS  Google Scholar 

  22. Y. Jiang, Y. Shen, J. Dong, S. Tan, Q. Wei, F. Xiong, Q. Li, X. Liao, Z. Liu, Q. An, L. Mai, Surface pseudocapacitive mechanism of molybdenum phosphide for high-energy and high-power sodium-ion capacitors. Adv. Energy Mater. 9 (2019)

    Google Scholar 

  23. M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel, M.D. Levi, J. Halim, P.-L. Taberna, M.W. Barsoum, P. Simon, Y. Gogotsi, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017)

    Article  CAS  Google Scholar 

  24. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014)

    Article  CAS  Google Scholar 

  25. B. Dunn, H.D. Abruña, P.-L. Taberna, J.W. Kim, S.H. Tolbert, M.A. Lowe, J. Come, P. Simon, V. Augustyn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013)

    Article  Google Scholar 

  26. T. Liu, Y. Li, Addressing the Achilles’ heel of pseudocapacitive materials: long-term stability. InfoMat. 2, 807–842 (2020)

    Article  CAS  Google Scholar 

  27. K. Fröhlich, M. Ťapajna, A. Rosová, E. Dobročka, K. Hušeková, J. Aarik, A. Aidla, Growth of high-dielectric-constant TiO[sub 2] films in capacitors with RuO[sub 2] electrodes. Electrochem. Solid-State Lett. 11, G19 (2008)

    Google Scholar 

  28. H.-S. Kim, J.B. Cook, S.H. Tolbert, B. Dunn, The development of pseudocapacitive properties in nanosized-MoO2. J. Electrochem. Soc. 162, A5083–A5090 (2015)

    Article  CAS  Google Scholar 

  29. A. Jadon, S. Prabhudev, G. Buvat, S.G. Patnaik, M. Djafari-Rouhani, A. Estève, D. Guay, D. Pech, Rethinking pseudocapacitance: a way to harness charge storage of crystalline RuO2. ACS Appl. Energy Mater. 3, 4144–4148 (2020)

    Article  CAS  Google Scholar 

  30. H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, G.W. Yang, Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 4, 1894 (2013)

    Article  CAS  Google Scholar 

  31. X. Yu, S. Yun, J.S. Yeon, P. Bhattacharya, L. Wang, S.W. Lee, X. Hu, H.S. Park, Emergent pseudocapacitance of 2d nanomaterials. Adv. Energy Mater. 8, 1702930 (2018)

    Article  Google Scholar 

  32. Y. Gogots, P. Simon, True performance metrics in electrochemical energy storage. Science (80–), 334, 917–918 (2011)

    Google Scholar 

  33. L. Yu, G.Z. Chen, Supercapatteries as high-performance electrochemical energy storage devices. Electrochem. Energy Rev. 3, 271–285 (2020)

    Article  Google Scholar 

  34. C. Wang, X. Wang, C. Lin, X.S. Zhao, Lithium titanate cuboid arrays grown on carbon fiber cloth for high-rate flexible lithium-ion batteries. Small 15, 1902183 (2019)

    Article  CAS  Google Scholar 

  35. Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, Y. Lu, High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 23, 791–795 (2011)

    Article  CAS  Google Scholar 

  36. T.S. Dörr, S. Fleischmann, M. Zeiger, I. Grobelsek, P.W. de Oliveira, V. Presser, Ordered mesoporous titania/carbon hybrid monoliths for lithium-ion battery anodes with high areal and volumetric capacity. Chem.—A Eur. J. 24, 6358–6363 (2018)

    Article  Google Scholar 

  37. S. Fleischmann, T.S. Dörr, A. Frank, S.W. Hieke, D. Doblas-Jimenez, C. Scheu, P.W. de Oliveira, T. Kraus, V. Presser, Gyroidal niobium sulfide/carbon hybrid monoliths for electrochemical energy storage. Batter. Supercaps. 2, 668–672 (2019)

    Article  CAS  Google Scholar 

  38. X. Wang, T.S. Mathis, K. Li, Z. Lin, L. Vlcek, T. Torita, N.C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, M. Tyagi, E. Mamontov, P. Simon, Y. Gogotsi, Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241–248 (2019)

    Article  CAS  Google Scholar 

  39. M.E. Suss, V. Presser, Water desalination with energy storage electrode materials. Joule 2, 10–15 (2018)

    Article  Google Scholar 

  40. P. Srimuk, X. Su, J. Yoon, D. Aurbach, V. Presser, Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5, 517–538 (2020)

    Article  CAS  Google Scholar 

  41. F. Zhu, Q. Xiao, Z. Hu, J. Ma, S. Komarneni, In situ formation of MnO2/Ni(OH)2@nickel foam with porous architecture for triggering persulfate-based advanced oxidation process. J. Porous Mater. 29, 1629–1637 (2022)

    Article  CAS  Google Scholar 

  42. D. Chen, D. Ding, X. Li, G.H. Waller, X. Xiong, M.A. El-Sayed, M. Liu, Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy. Chem. Mater. 27, 6608–6619 (2015)

    Article  CAS  Google Scholar 

  43. S. Makino, T. Ban, W. Sugimoto, Towards implantable bio-supercapacitors: pseudocapacitance of ruthenium oxide nanoparticles and nanosheets in acids, buffered solutions, and bioelectrolytes. J. Electrochem. Soc. 162, A5001–A5006 (2015)

    Article  CAS  Google Scholar 

  44. S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D. Jiang, V. Presser, V. Augustyn, Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020)

    Article  CAS  Google Scholar 

  45. B. Pandit, S.A. Pande, B.R. Sankapal, Facile SILAR processed Bi2S3:PbS solid solution on MWCNTs for high-performance electrochemical supercapacitor. Chinese J. Chem. 37, 1279–1286 (2019)

    Article  CAS  Google Scholar 

  46. S.S. Karade, A. Agarwal, B. Pandit, R.V. Motghare, S.A. Pande, B.R. Sankapal, First report on solution processed α-Ce2S3 rectangular microrods: an efficient energy storage supercapacitive electrode. J. Colloid Interface Sci. 535, 169–175 (2019)

    Article  CAS  Google Scholar 

  47. S.A. Pande, B. Pandit, B.R. Sankapal, Electrochemical approach of chemically synthesized HgS nanoparticles as supercapacitor electrode. Mater. Lett. 209, 97–101 (2017)

    Article  CAS  Google Scholar 

  48. S. Patil, S. Raut, B. Pandit, S.N. Pandey, S.A. Pande, B. Sankapal, Web-analogues one-dimensional iron hydroxide@cadmium hydroxide nanostructure: electrochemical supercapacitor. J. Mater. Sci. Mater. Electron. 32, 22472–22480 (2021)

    Article  CAS  Google Scholar 

  49. S.A. Pande, B. Pandit, B.R. Sankapal, Vanadium oxide anchored MWCNTs nanostructure for superior symmetric electrochemical supercapacitors. Mater. Des. 182, 107972 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa Pande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pande, S., Pandit, B., Shaikh, S.F., Ahmed, J. (2024). Pseudocapacitance: Fundamentals to Advanced Applications. In: Gupta, R.K. (eds) Pseudocapacitors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45430-1_2

Download citation

Publish with us

Policies and ethics