Skip to main content

Pseudocapacitive Materials for Metal-Air Batteries

  • Chapter
  • First Online:
Pseudocapacitors

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 226 Accesses

Abstract

Clean energy storage is a problem faced by many nations around the world. These issues range from storing fluctuating energy from green energy storage to improving the battery life of smart devices. Additionally, the need for flexible electronics is rapidly rising in the medical and private fields of use. All these devices require storage sources with high energy density, long life, and reusability. Metal air batteries (MABs) exist as an up-and-coming device that can fit each of these needs handily. MABs boast an incredibly high potential energy density, environmental compatibility, and potential for reuse or recharge. Additionally, specific engineering methods allow for these devices to be engineered for high flexibility. To further improve the efficacy of these devices, pseudocapacitive integration has been explored. By imbuing a redox nature further energy storage is possible. Given these facts, the functionality of MABs is explored in brief, alongside the integration of different materials to improve their performance and flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin, Y. Cui, W. Chen, Rechargeable batteries for grid scale energy storage. Chem. Rev. 122, 16610–16751 (2022)

    Article  CAS  Google Scholar 

  2. T.B. Clarke, M.W. Glasscott, J.E. Dick, The role of oxygen in the voltaic pile. J. Chem. Educ. 98, 2927–2936 (2021)

    Article  CAS  Google Scholar 

  3. Y. Li, J. Lu, Metal-air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett. 2, 1370–1377 (2017)

    Article  CAS  Google Scholar 

  4. P. Zhang, X. Liu, J. Xue, K. Jiang, The role of microstructural evolution in improving energy conversion of Al-based anodes for metal-air batteries. J. Power Sources 451, 227806 (2020)

    Article  CAS  Google Scholar 

  5. S.-M. Lee, Y.-J. Kim, S.-W. Eom, N.-S. Choi, K.-W. Kim, S.-B. Cho, Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density. J. Power Sources 227, 177–184 (2013)

    Article  CAS  Google Scholar 

  6. D. Huang, F. Cao, T. Ying, D. Zheng, G.-L. Song, High-energy-capacity metal-air battery based on a magnetron-sputtered Mg–Al anode. J. Power Sources 520, 230874 (2022)

    Article  CAS  Google Scholar 

  7. A. Manthiram, L. Li, Hybrid and aqueous lithium-air batteries. Adv. Energy Mater. 5, 1401302 (2015)

    Article  Google Scholar 

  8. Z. Jiang, A.M. Rappe, Mechanistic study of the Li–air battery with a Co3O4 cathode and dimethyl sulfoxide electrolyte. J. Phys. Chem. C 125, 21873–21881 (2021)

    Article  CAS  Google Scholar 

  9. J. Yi, X. Liu, S. Guo, K. Zhu, H. Xue, H. Zhou, Novel stable gel polymer electrolyte: toward a high safety and long life Li–air battery. ACS Appl. Mater. Interfaces 7, 23798–23804 (2015)

    Article  CAS  Google Scholar 

  10. Y. Liu, B. Li, H. Kitaura, X. Zhang, M. Han, P. He, H. Zhou, Fabrication and performance of all-solid-state Li–air battery with SWCNTs/LAGP cathode. ACS Appl. Mater. Interfaces 7, 17307–17310 (2015)

    Article  CAS  Google Scholar 

  11. P. Lang, N. Yuan, Q. Jiang, Y. Zhang, J. Tang, Recent advances and prospects of metal-based catalysts for oxygen reduction reaction. Energy Technol. 8, 1900984 (2020)

    Article  CAS  Google Scholar 

  12. A.A. Keller, H. Wang, D. Zhou, H.S. Lenihan, G. Cherr, B.J. Cardinale, R. Miller, Z. Ji, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 44, 1962–1967 (2010)

    Article  CAS  Google Scholar 

  13. W. Deng, X. Ji, Q. Chen, C.E. Banks, Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Adv. 1, 1171–1178 (2011)

    Article  CAS  Google Scholar 

  14. R. He, X. Huang, L. Feng, Recent progress in transition-metal sulfide catalyst regulation for improved oxygen evolution reaction. Energy Fuels 36, 6675–6694 (2022)

    Article  CAS  Google Scholar 

  15. J. Wu, T. Ye, Y. Wang, P. Yang, Q. Wang, W. Kuang, X. Chen, G. Duan, L. Yu, Z. Jin, J. Qin, Y. Lei, Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li–S batteries. ACS Nano 16, 15734–15759 (2022)

    Article  CAS  Google Scholar 

  16. J. Yang, Z. Wang, Z. Wang, J. Zhang, Q. Zhang, P.P. Shum, L. Wei, All-metal phosphide electrodes for high-performance quasi-solid-state fiber-shaped aqueous rechargeable Ni–Fe batteries. ACS Appl. Mater. Interfaces 12, 12801–12808 (2020)

    Article  CAS  Google Scholar 

  17. S. Li, X. Zhou, G. Fang, G. Xie, X. Liu, X. Lin, H.-J. Qiu, Multicomponent spinel metal oxide nanocomposites as high-performance bifunctional catalysts in Zn–Air batteries. ACS Appl. Energy Mater. 3, 7710–7718 (2020)

    Article  CAS  Google Scholar 

  18. W. Shang, W. Yu, X. Xiao, Y. Ma, Y. He, P. Tan, Free-standing electrode of core–shell-structured NiO@Co3S4 for high-performance hybrid Zn–Co/Air batteries. Energy Fuels 36, 1121–1128 (2022)

    Article  CAS  Google Scholar 

  19. C.A. Downes, K.M. Van Allsburg, S.A. Tacey, K.A. Unocic, F.G. Baddour, D.A. Ruddy, N.J. LiBretto, M.M. O’Connor, C.A. Farberow, J.A. Schaidle, S.E. Habas, Controlled synthesis of transition metal phosphide nanoparticles to establish composition-dependent trends in electrocatalytic activity. Chem. Mater. 34, 6255–6267 (2022)

    Article  CAS  Google Scholar 

  20. Y. Wang, M. Wu, J. Li, H. Huang, J. Qiao, In situ growth of CoP nanoparticles anchored on (N, P) co-doped porous carbon engineered by MOFs as advanced bifunctional oxygen catalyst for rechargeable Zn–air battery. J. Mater. Chem. A 8, 19043–19049 (2020)

    Article  CAS  Google Scholar 

  21. A.M. Bryan, L.M. Santino, Y. Lu, S. Acharya, J.M. D’Arcy, Conducting polymers for pseudocapacitive energy storage. Chem. Mater. 28, 5989–5998 (2016)

    Article  CAS  Google Scholar 

  22. C.I. Awuzie, Conducting polymers. Mater. Today Proc. 4, 5721–5726 (2017)

    Article  Google Scholar 

  23. M.K. Aslam, Y. Niu, T. Hussain, H. Tabassum, W. Tang, M. Xu, R. Ahuja, How to avoid dendrite formation in metal batteries: innovative strategies for dendrite suppression. Nano Energy 86, 106142 (2021)

    Article  CAS  Google Scholar 

  24. T. Wang, M. Kunimoto, T. Mori, M. Yanagisawa, J. Niikura, I. Takahashi, M. Morita, T. Abe, T. Homma, Carbonate formation on carbon electrode in rechargeable zinc-air battery revealed by in-situ Raman measurements. J. Power Sources 533, 231237 (2022)

    Article  CAS  Google Scholar 

  25. Y. Chen, W. Li, Y. Yao, P. Gogoi, X. Deng, Y. Xie, Z. Yang, Y. Wang, Y.C. Li, Enabling acidic oxygen reduction reaction in a zinc-air battery with bipolar membrane. ACS Appl. Mater. Interfaces 14, 12257–12263 (2022)

    Article  CAS  Google Scholar 

  26. Z. Shui, Y. Chen, W. Zhao, X. Chen, Flexible aluminum-air battery based on ionic liquid-gel polymer electrolyte. Langmuir 38, 10791–10798 (2022)

    Article  CAS  Google Scholar 

  27. J.V. Alemán, A.V. Chadwick, J. He, M. Hess, K. Horie, R.G. Jones, P. Kratochvíl, I. Meisel, I. Mita, G. Moad, S. Penczek, R.F.T. Stepto, Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). 79, 1801–1829 (2007)

    Google Scholar 

  28. F. Daneshvar, S. Tagliaferri, H. Chen, T. Zhang, C. Liu, H.-J. Sue, Ultralong electrospun copper-carbon nanotube composite fibers for transparent conductive electrodes with high operational stability. ACS Appl. Electron. Mater. 2, 2692–2698 (2020)

    Article  CAS  Google Scholar 

  29. Y. Chen, J. Chen, K. Bai, Z. Xiao, S. Fan, A flow-through electrode for hydrogen production from water splitting by mitigating bubble induced overpotential. J. Power Sources 561, 232733 (2023)

    Article  CAS  Google Scholar 

  30. A.J. Samuels, J.D. Carey, Engineering graphene conductivity for flexible and high-frequency applications. ACS Appl. Mater. Interfaces 7, 22246–22255 (2015)

    Article  CAS  Google Scholar 

  31. F. Sarker, N. Karim, S. Afroj, V. Koncherry, K.S. Novoselov, P. Potluri, High-performance graphene-based natural fiber composites. ACS Appl. Mater. Interfaces 10, 34502–34512 (2018)

    Article  CAS  Google Scholar 

  32. U. Misra, N. Dixit, S.P. Singh, Effect of Laser parameters on Laser-induced graphene filter fabrication and its performance for desalination and water purification. ACS Appl. Mater. Interfaces 15, 7899–7910 (2023)

    Article  CAS  Google Scholar 

  33. S.Y. Ryu, M.R. Hoffmann, α-NiO/Ni(OH)2/AgNP/F-graphene composite for energy storage application. ACS Omega 8, 10906–10918 (2023)

    Article  CAS  Google Scholar 

  34. A. Kundu, A. Samanta, C.R. Raj, Hierarchical hollow MOF-derived bamboo-like N-doped carbon nanotube-encapsulated Co0.25Ni0.75 alloy: an efficient bifunctional oxygen electrocatalyst for zinc–air battery. ACS Appl. Mater. Interfaces. 13, 30486–30496 (2021)

    Google Scholar 

  35. K.R.G. Lim, A.D. Handoko, S.K. Nemani, B. Wyatt, H.-Y. Jiang, J. Tang, B. Anasori, Z.W. Seh, Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 14, 10834–10864 (2020)

    Article  CAS  Google Scholar 

  36. X. Hui, P. Zhang, Z. Wang, D. Zhao, Z. Li, Z. Zhang, C. Wang, L. Yin, Vacancy defect-rich perovskite SrTiO3/Ti3C2 heterostructures in situ derived from Ti3C2 MXenes with exceptional oxygen catalytic activity for advanced Zn–air batteries. ACS Appl. Energy Mater. 5, 6100–6109 (2022)

    Article  CAS  Google Scholar 

  37. M. Li, C. Li, X. Xu, M. Wang, Z. Zhu, K. Meng, B. He, G. Yu, Y. Hu, L.-M. Peng, Y. Jiang, An ultrathin flexible programmable spin logic device based on spin–orbit torque. Nano Lett. (2023)

    Google Scholar 

  38. C. Li, H. Chen, S. Zhang, W. Yang, M. Gao, P. Huang, M. Wu, Z. Sun, J. Wang, X. Wei, Wearable and biocompatible blood oxygen sensor based on heterogeneously integrated lasers on a laser-induced graphene electrode. ACS Appl. Electron. Mater. 4, 1583–1591 (2022)

    Article  CAS  Google Scholar 

  39. B. Lim, J. Kim, M.S. Desai, W. Wu, I. Chae, S.-W. Lee, Elastic fluorescent protein-based down-converting optical films for flexible display. Biomacromolecules 24, 118–131 (2023)

    Article  CAS  Google Scholar 

  40. S. Qu, B. Liu, J. Wu, Z. Zhao, J. Liu, J. Ding, X. Han, Y. Deng, C. Zhong, W. Hu, Kirigami-inspired flexible and stretchable zinc-air battery based on metal-coated sponge electrodes. ACS Appl. Mater. Interfaces 12, 54833–54841 (2020)

    Article  CAS  Google Scholar 

  41. Z. Shui, X. Liao, Y. Lei, J. Ni, Y. Liu, Y. Dan, W. Zhao, X. Chen, MnO2 Synergized with N/S codoped graphene as a flexible cathode efficient electrocatalyst for advanced honeycomb-shaped stretchable aluminum-air batteries. Langmuir 36, 12954–12962 (2020)

    Article  CAS  Google Scholar 

  42. C. Aswin Karthik, P. Kalita, X. Cui, X. Peng, Thermal management for prevention of failures of lithium ion battery packs in electric vehicles: a review and critical future aspects. Energy Storage 2, e137 (2020)

    Google Scholar 

  43. Y. Zhang, H. Qin, M. Alfred, H. Ke, Y. Cai, Q. Wang, F. Huang, B. Liu, P. Lv, Q. Wei, Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions. Energy Storage Mater. 42, 88–96 (2021)

    Article  CAS  Google Scholar 

  44. J. Li, Z. Wang, L. Yang, Y. Liu, Y. Xing, S. Zhang, H. Xu, A flexible Li–air battery workable under harsh conditions based on an integrated structure: a composite lithium anode encased in a gel electrolyte. ACS Appl. Mater. Interfaces 13, 18627–18637 (2021)

    Article  CAS  Google Scholar 

  45. X. Chen, L. Yi, C. Zou, J. Liu, J. Yu, Z. Zang, X. Tao, Z. Luo, X. Guo, G. Chen, B. Chang, Y. Shen, X. Wang, High-performance gel polymer electrolyte with self-healing capability for lithium-ion batteries. ACS Appl. Energy Mater. 5, 5267–5276 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, A., Gupta, R.K. (2024). Pseudocapacitive Materials for Metal-Air Batteries. In: Gupta, R.K. (eds) Pseudocapacitors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45430-1_19

Download citation

Publish with us

Policies and ethics