Skip to main content

Pseudocapacitance: An Introduction

  • Chapter
  • First Online:
Pseudocapacitors

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 245 Accesses

Abstract

An electrochemical energy storage device that can deliver high power and energy density is needed globally. To accomplish this one method adopted involves the use of pseudocapacitive materials that use reversible surface or near-surface Faradaic processes to store charges. By doing so, they can overcome the mass transfer and capacity limits of batteries and electrical double-layer capacitors. Both chemical and electrostatic processes are used to store charges in pseudocapacitors. Pseudocapacitors have a charge transfer process that is comparable to that of a battery. There is a greater rate of transfer because of the use of a thinner redox material on the electrode or less ion penetration into the structure from the electrolyte. Technology is still in need of development in materials performance and device reliability. Research is still being done to determine the materials and electrochemical properties that can produce high energy density at quicker charge–discharge rates. In this context, transition metal oxides are attractive. With this as the background, the latest developments in pseudocapacitor materials and devices are discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. B.E. Conway, Transition from “Supercapacitor” to “Battery” behavior in electrochemical energy storage. J. Electrochem. Soc. 138, 1539 (1991)

    Article  CAS  Google Scholar 

  2. P. Bhojane, Recent advances and fundamentals of pseudocapacitors: materials, mechanism, and its understanding. J. Energy Storage 45, 103654 (2022)

    Article  Google Scholar 

  3. N. Swain, B. Saravanakumar, M. Kundu, L. Schmidt-Mende, A. Ramadoss, Recent trends in template assisted 3D porous materials for electrochemical supercapacitors. J. Mater. Chem. A 9, 25286–25324 (2021)

    Article  CAS  Google Scholar 

  4. D.C. Grahame, Properties of the electrical double layer at a mercury surface. I. Methods of measurement and interpretation of results. J. Am. Chem. Soc. 63, 1207–1215 (1941)

    Article  CAS  Google Scholar 

  5. S. Srinivasan, E. Gileadi, The potential-sweep method: a theoretical analysis. Electrochim Acta 11, 321–335 (1966)

    Article  CAS  Google Scholar 

  6. B.E. Conway, E. Gileadi, Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage. Trans. Faraday Soc. 58, 2493–2509 (1962)

    Article  CAS  Google Scholar 

  7. F. Scholz, E.P.M. Leiva, Moïse Haïssinsky: The discoverer of underpotential deposition. ChemElectroChem 5, 849–854 (2018)

    Article  CAS  Google Scholar 

  8. S. Trasatti, G. Buzzanca, Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour. J. Electroanal. Chem. Interfacial Electrochem. 29, A1–A5 (1971)

    Article  Google Scholar 

  9. J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 2699 (1995)

    Article  CAS  Google Scholar 

  10. S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D. Jiang, V. Presser, V. Augustyn, Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020)

    Article  CAS  Google Scholar 

  11. H.Y. Lee, J.B. Goodenough, Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220–223 (1999)

    Article  CAS  Google Scholar 

  12. B.E. Conway, Two-dimensional and quasi-two-dimensional isotherms for Li intercalation and UPD processes at surfaces. Electrochim. Acta 38, 1249–1258 (1993)

    Article  CAS  Google Scholar 

  13. M.D. Levi, D. Aurbach, Frumkin intercalation isotherm—a tool for the description of lithium insertion into host materials: a review. Electrochim. Acta 45, 167–185 (1999)

    Article  CAS  Google Scholar 

  14. J. Come, V. Augustyn, J.W. Kim, P. Rozier, P.-L. Taberna, P. Gogotsi, J.W. Long, B. Dunn, P. Simon, Electrochemical kinetics of nanostructured Nb2O5 electrodes. J. Electrochem. Soc. 161, A718 (2014)

    Article  CAS  Google Scholar 

  15. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)

    Article  CAS  Google Scholar 

  16. B.-Y. Chang, E. Ahn, S.-M. Park, Real-time staircase cyclic voltammetry fourier transform electrochemical impedance spectroscopic studies on underpotential deposition of lead on gold. J. Phys. Chem. C 112, 16902–16909 (2008)

    Article  CAS  Google Scholar 

  17. B.E. Conway, H. Angerstein-Kozlowska, The electrochemical study of multiple-state adsorption in monolayers. Acc. Chem. Res. 14, 49–56 (1981)

    Article  CAS  Google Scholar 

  18. D. Rochefort, A.-L. Pont, Pseudocapacitive behaviour of RuO2 in a proton exchange ionic liquid. Electrochem. Commun. 8, 1539–1543 (2006)

    Article  CAS  Google Scholar 

  19. Y. Liu, S.P. Jiang, Z. Shao, Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Mater. Today Adv. 7, 100072 (2020)

    Article  Google Scholar 

  20. W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)

    Article  CAS  Google Scholar 

  21. B.W. Ricketts, C. Ton-That, Self-discharge of carbon-based supercapacitors with organic electrolytes. J. Power Sourc. 89, 64–69 (2000)

    Article  CAS  Google Scholar 

  22. B.E. Conway, W.G. Pell, T.-C. Liu, Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J. Power Sourc. 65, 53–59 (1997)

    Article  CAS  Google Scholar 

  23. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014)

    Google Scholar 

  24. T. Brousse, D. BĂ©langer, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185 (2015)

    Article  CAS  Google Scholar 

  25. Y. Gogotsi, R.M. Penner, Energy storage in nanomaterials—capacitive, pseudocapacitive, or battery-like? ACS Nano 12, 2081–2083 (2018)

    Article  CAS  Google Scholar 

  26. R.A. Patil, C.-P. Chang, R.S. Devan, Y. Liou, Y.-R. Ma, Impact of nanosize on supercapacitance: study of 1D nanorods and 2D thin-films of nickel oxide. ACS Appl. Mater. Interfaces 8, 9872–9880 (2016)

    Article  CAS  Google Scholar 

  27. F. Ning, M. Shao, C. Zhang, S. Xu, M. Wei, X. Duan, Co3O4@layered double hydroxide core/shell hierarchical nanowire arrays for enhanced supercapacitance performance. Nano Energy 7, 134–142 (2014)

    Article  CAS  Google Scholar 

  28. Y. Ding, S. Tang, R. Han, S. Zhang, G. Pan, X. Meng, Iron oxides nanobelt arrays rooted in nanoporous surface of carbon tube textile as stretchable and robust electrodes for flexible supercapacitors with ultrahigh areal energy density and remarkable cycling-stability. Sci. Rep. 10, 11023 (2020)

    Article  CAS  Google Scholar 

  29. O. Ghodbane, J.-L. Pascal, F. Favier, Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 1, 1130–1139 (2009)

    Article  CAS  Google Scholar 

  30. S.R. Ede, S. Anantharaj, K.T. Kumaran, S. Mishra, S. Kundu, One step synthesis of Ni/Ni(OH)2 nano sheets (NSs) and their application in asymmetric supercapacitors. RSC Adv. 7, 5898–5911 (2017)

    Article  CAS  Google Scholar 

  31. B. Gao, X. Li, K. Ding, C. Huang, Q. Li, P.K. Chu, K. Huo, Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. J. Mater. Chem. A 7, 14–37 (2019)

    Article  CAS  Google Scholar 

  32. J.-L. Calais, Band structure of transition metal compounds. Adv. Phys. 26, 847–885 (1977)

    Article  CAS  Google Scholar 

  33. A. Joseph, T. Thomas, Recent advances and prospects of metal oxynitrides for supercapacitor. Progr. Solid State Chem. 68, 100381 (2022)

    Article  CAS  Google Scholar 

  34. W. Liu, H. Niu, J. Yang, K. Cheng, K. Ye, K. Zhu, G. Wang, D. Cao, J. Yan, Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem. Mater. 30, 1055–1068 (2018)

    Article  CAS  Google Scholar 

  35. Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004)

    Google Scholar 

  36. X. Zhao, W. Sun, D. Geng, W. Fu, J. Dan, Y. Xie, P.R.C. Kent, W. Zhou, S.J. Pennycook, K.P. Loh, Edge segregated polymorphism in 2d molybdenum carbide. Adv. Mater. 31, 1808343 (2019)

    Article  Google Scholar 

  37. T. Qin, Z. Wang, Y. Wang, F. Besenbacher, M. Otyepka, M. Dong, Recent progress in emerging two-dimensional transition metal carbides. Nanomicro Lett. 13, 183 (2021)

    CAS  Google Scholar 

  38. Kumar A. Bharti, G. Ahmed, M. Gupta, P. Bocchetta, R. Adalati, R. Chandra, Y. Kumar, Theories and models of supercapacitors with recent advancements: impact and interpretations. Nano Express 2, 22004 (2021)

    Article  Google Scholar 

  39. C. Zhan, C. Lian, Y. Zhang, M.W. Thompson, Y. Xie, J. Wu, P.R.C. Kent, P.T. Cummings, D. Jiang, D.J. Wesolowski, Computational insights into materials and interfaces for capacitive energy storage. Adv. Sci. 4, 1700059 (2017)

    Article  Google Scholar 

  40. H. Wang, L. Pilon, Mesoscale modeling of electric double layer capacitors with three-dimensional ordered structures. J Power Sourc. 221, 252–260 (2013)

    Article  CAS  Google Scholar 

  41. S.-W. Woo, K. Dokko, H. Nakano, K. Kanamura, Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. J. Mater. Chem. 18, 1674–1680 (2008)

    Article  CAS  Google Scholar 

  42. H.-L. Girard, H. Wang, A.L. d’Entremont, L. Pilon, Enhancing faradaic charge storage contribution in hybrid pseudocapacitors. Electrochim. Acta 182, 639–651 (2015)

    Article  CAS  Google Scholar 

  43. T. Kadyk, M. Eikerling, Charging mechanism and moving reaction fronts in a supercapacitor with pseudocapacitance. J. Electrochem. Soc. 161, A239 (2013)

    Article  Google Scholar 

  44. G. Sikha, R.E. White, B.N. Popov, A mathematical model for a lithium-ion battery/electrochemical capacitor hybrid system. J. Electrochem. Soc. 152, A1682 (2005)

    Article  CAS  Google Scholar 

  45. Y. Liu, F. Zhou, V. Ozolins, Ab Initio study of the charge-storage mechanisms in RuO2-based electrochemical ultracapacitors. J. Phys. Chem. C 116, 1450–1457 (2012)

    Article  CAS  Google Scholar 

  46. C. Zhan, D. Jiang, Understanding the pseudocapacitance of RuO2 from joint density functional theory. J. Phys.: Condens. Matter 28, 464004 (2016)

    Google Scholar 

  47. S. Devan, V.R. Subramanian, R.E. White, Analytical solution for the impedance of a porous electrode. J. Electrochem. Soc. 151, A905 (2004)

    Article  CAS  Google Scholar 

  48. L. Li, Z. Wu, Y. Shuang, X.-B. Zhang, Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7, 2101 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anit Joseph or Tiju Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joseph, A., Thomas, T. (2024). Pseudocapacitance: An Introduction. In: Gupta, R.K. (eds) Pseudocapacitors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45430-1_1

Download citation

Publish with us

Policies and ethics