Skip to main content

Interface Modification and Characterization of PVC Based Composites and Nanocomposites

  • Chapter
  • First Online:
Poly(Vinyl Chloride) Based Composites and Nanocomposites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 248 Accesses

Abstract

Weak interfaces in composites result in unsatisfactory stiffness and strength of the composites due to poor stress transfer from the matrix to the fibre. Better interfaces can be achieved by physical and chemical modification techniques. Recent studies show a high interest in incorporation of natural fibres in PVC composites as eco-friendly reinforcing component. Common fillers in PVC composites are calcium carbonate and wood flour. Carbon black, copper and nickel metal powders can be added for conductive applications, and ferrite powder for magnetic applications. Plasma treatment has been applied to wood flour and natural fibres to enhance the interface with PVC matrix. Besides this physical modification method, there are many chemical modification techniques, such as treatment of natural fibres with stearic acid or with sodium hydroxide. The use of coupling agents, such as maleic anhydride, silane, titanate, is also a common treatment method to enhance interfaces in composites. The interface can be characterized by several methods, including Fourier Transform Infrared spectrometry, scanning electron microscopy, X-ray computed tomography, pull-out micromechanical tests, dynamic mechanical analyses and rheological tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakar, N., Chee, C.Y., Abdullah, L.C., Ratnam, C.T., Azowa, N.: Effect of methyl methacrylate grafted kenaf on mechanical properties of polyvinyl chloride/ethylene vinyl acetate composites. Compos. Part A Appl. Sci. Manuf. 63, 45–50 (2014). https://doi.org/10.1016/j.compositesa.2014.03.023

    Article  CAS  Google Scholar 

  2. Kara, A., Budakci, M., Camlibel, O.: The effect of fiberboard modification on adhesion strength to polyvinyl chloride (PVC) sheets or eastern beech (Fagus orientalis L.) veneers. Bioresources 13(4), 8295–8309 (2018). https://doi.org/10.15376/biores.13.4.8295-8309

  3. Safarpour, M., Safikhani, A., Vatanpour, V.: Polyvinyl chloride-based membranes: a review on fabrication techniques, applications and future perspectives. Sep. Purif. Technol. 279 (2021). https://doi.org/10.1016/j.seppur.2021.119678

  4. Guo, Y.X., Leroux, F., Tian, W.L., Li, D.Q., Tang, P.G., Feng, Y.J.: Layered double hydroxides as thermal stabilizers for Poly(vinyl chloride): a review. Appl. Clay Sci. 211 (2021). https://doi.org/10.1016/j.clay.2021.106198

  5. Wirawan, R., Sapuan, S.M.: Sugarcane Bagasse-Filled Poly (Vinyl Chloride) Composites: A Review (2018). https://doi.org/10.1016/b978-0-08-102160-6.00007-x

  6. Ahmad, N., Kausar, A., Muhammad, B.: Perspectives on polyvinyl chloride and carbon nanofiller composite: a review. Polym.-Plast. Technol. Eng. 55(10), 1076–1098 (2016). https://doi.org/10.1080/03602559.2016.1163587

    Article  CAS  Google Scholar 

  7. Khalil, H., Tehrani, M.A., Davoudpour, Y., Bhat, A.H., Jawaid, M., Hassan, A.: Natural fiber reinforced poly(vinyl chloride) composites: a review. J. Reinf. Plast. Compos. 32(5), 330–356 (2013). https://doi.org/10.1177/0731684412458553

    Article  CAS  Google Scholar 

  8. Luong, D.D., Pinisetty, D., Gupta, N.: Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: experimental investigation and critical review of state of the art. Compos. Part B Eng. 44(1), 403–416 (2013). https://doi.org/10.1016/j.compositesb.2012.04.060

    Article  CAS  Google Scholar 

  9. Ramesh, M.: Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Prog. Mater. Sci. 78–79, 1–92 (2016). https://doi.org/10.1016/j.pmatsci.2015.11.001

    Article  CAS  Google Scholar 

  10. Sliwa, F., El Bounia, N.E., Charrier, F., Marin, G., Malet, F.: Mechanical and interfacial properties of wood and bio-based thermoplastic composite. Compos. Sci. Technol. 72(14), 1733–1740 (2012). https://doi.org/10.1016/j.compscitech.2012.07.002

    Article  CAS  Google Scholar 

  11. Aouat, H., Hammiche, D., Boukerrou, A., Djidjelli, H., Grohens, Y., Pillin, I.: Effects of interface modification on composites based on olive husk flour. In: International Network of Biomaterials and Engineering Science (INBES). Agadir, MOROCCO, pp. 94–100 (2020)

    Google Scholar 

  12. Canche-Escamilla, G., Cauich-Cupul, J.I., Mendizabal, E., Puig, J.E., Vazquez-Torres, H., Herrera-Franco, P.J.: Mechanical properties of acrylate-grafted henequen cellulose fibers and their application in composites. Compos. Part A Appl. Sci. Manuf. 30(3), 349–359 (1999). https://doi.org/10.1016/s1359-835x(98)00116-x

    Article  Google Scholar 

  13. Mohanty, A.K., Khan, M.A., Hinrichsen, G.: Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites. Compos. Sci. Technol. 60(7), 1115–1124 (2000). https://doi.org/10.1016/s0266-3538(00)00012-9

    Article  CAS  Google Scholar 

  14. Liu, W., Mohanty, A.K., Drzal, L.T., Askel, P., Misra, M.: Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. J. Mater. Sci. 39(3), 1051–1054 (2004). https://doi.org/10.1023/b:Jmsc.0000012942.83614.75

    Article  CAS  Google Scholar 

  15. Pickering, K.L., Abdalla, A., Ji, C., McDonald, A.G., Franich, R.A.: The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Compos. Part A Appl. Sci. Manuf. 34(10), 915–926 (2003). https://doi.org/10.1016/s1359-835x(03)00234-3

    Article  Google Scholar 

  16. Jiang, L.P., Fu, J.J., Liu, L.H.: Seawater degradation resistance of straw fiber-reinforced polyvinyl chloride composites. Bioresources 15(3), 5305–5315 (2020). https://doi.org/10.15376/biores.15.3.5305-5315

  17. Jiang, L.P., He, C.X., Fu, J.J., Li, X.L.: Wear behavior of alkali-treated Sorghum straw fiber reinforced polyvinyl chloride composites in corrosive water conditions. Bioresources 13(2), 3362–3376 (2018). https://doi.org/10.15376/biores.13.2.3362-3376

  18. Jiang, L.P., He, C.X., Fu, J.J., Xu, D.Z.: Enhancement of wear and corrosion resistance of polyvinyl chloride/sorghum straw-based composites in cyclic sea water and acid rain conditions. Constr. Build. Mater. 223, 133–141 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.216

    Article  CAS  Google Scholar 

  19. Saidi, M.A.A., Ahmad, M., Arjmandi, R., Hassan, A., Rahmat, A.R.: The Effect of Titanate Coupling Agent on Water Absorption and Mechanical Properties of Rice Husk Filled Poly(vinyl Chloride) Composites (2018). https://doi.org/10.1016/b978-0-08-102160-6.00010-x

  20. Wang, L., He, C.X.: Effects of rice husk fibers on the properties of mixed-particle-size fiber-reinforced polyvinyl chloride composites under soil accelerated aging conditions. J. Eng. Fibers Fabr. 14 (2019). https://doi.org/10.1177/1558925019879288

  21. Kazi, M.K., Eljack, F., Mahdi, E.: Predictive ANN models for varying filler content for cotton fiber/PVC composites based on experimental load displacement curves. Compos. Struct. 254 (2020). https://doi.org/10.1016/j.compstruct.2020.112885

  22. Li, Y.Y., Wang, B., Wang, B., Ma, M.G.: The enhancement performances of cotton stalk fiber/PVC composites by sequential two steps modification. J. Appl. Polym. Sci. 135(14) (2018). https://doi.org/10.1002/app.46090

  23. Mahdi, E., Dean, A.: The effect of filler content on the tensile behavior of polypropylene/cotton fiber and poly(vinyl chloride)/cotton fiber composites. Mater. 13(3) (2020). https://doi.org/10.3390/ma13030753

  24. Boussehel, H., Mazouzi, D., Belghar, N., Guerira, B., Lachi, M.: Effect of chemicals treatments on the morphological, mechanical, thermal and water uptake properties of polyvinyl chloride/palm fibers composites. Revue Des Composites Et Des Materiaux Avances. J. Compos. Adv. Mater. 29(1), 1–8 (2019). https://doi.org/10.18280/rcma.290101

  25. Qi, R.G., He, C.X., Jin, Q.: Effect of acrylate-styrene-acrylonitrile on the aging properties of eucalyptus/PVC wood-plastic composites. Bioresources 14(4), 9159–9168 (2019). https://doi.org/10.15376/biores.14.4.9159-9168

  26. Wang, L., He, C.X., Li, X.L., Yang, X.: Performance analysis of ternary composites with lignin, eucalyptus fiber, and polyvinyl chloride. BioResources 13(3), 6510–6523 (2018)

    Article  CAS  Google Scholar 

  27. Zhang, K.P., Bichi, A.H., Yang, J.Q.: Effect of acrylonitrile styrene acrylate on mechanical, thermal and three-body abrasion behaviors of eucalyptus fiber reinforced polyvinyl chloride composite. Mater. Res. Express 8(2) (2021). https://doi.org/10.1088/2053-1591/abe6db

  28. Zhang, K.P., Cui, Y.T., Cai, L.P.: Effect of operating parameters and abrasive particle size on three-body abrasion performance of alkali-treated eucalyptus fiber reinforced polyvinyl chloride composite. Bioresources 15(1), 1298–1310 (2020). https://doi.org/10.15376/biores.15.1.1298-1310

  29. Zhang, K.P., Cui, Y.T., Yan, W.B.: Thermal and three-body abrasion behaviors of alkali-treated eucalyptus fiber reinforced polyvinyl chloride composites. Bioresources 14(1), 1229–1240 (2019). https://doi.org/10.15376/biores.14.1.1229-1240

  30. Joglekar, J.J., Munde, Y.S., Jadhav, A.L., Bhutada, D.S., Radhakrishnan, S., Kulkarni, M.B.: Studies on effective utilization of Citrus Maxima fibers based PVC composites. In: 2nd International Conference on Recent Advances in Materials and Manufacturing (ICRAMM), Erode, India, pp. 578–583 (2020)

    Google Scholar 

  31. Awad, S., Hamouda, T., Midani, M., Zhou, Y.H., Katsou, E., Fan, M.Z.: Date palm fibre geometry and its effect on the physical and mechanical properties of recycled polyvinyl chloride composite. Ind. Crops Prod. 174 (2021). https://doi.org/10.1016/j.indcrop.2021.114172

  32. Nayak, S., Mohanty, J.R., Samal, P.R., Nanda, B.K.: Polyvinyl chloride reinforced with areca sheath fiber composites-an experimental study. J. Nat. Fibers 17(6), 781–792 (2020). https://doi.org/10.1080/15440478.2018.1534186

    Article  CAS  Google Scholar 

  33. Zhong, X.Y., Zhu, Y.W., Liu, S.J., Fu, J.J., Lin, H., He, C.X.: Performance analysis of four plant fiber/polyvinyl chloride composites under two degradation conditions with water or seawater with xenon lamp. BioResources 15(3), 4672–4688 (2020)

    Article  CAS  Google Scholar 

  34. Adediran, A.A., Akinwande, A.A., Balogun, O.A., Olasoju, O.S., Adesina, O.S.: Experimental evaluation of bamboo fiber/particulate coconut shell hybrid PVC composite. Sci. Rep. 11(1) (2021). https://doi.org/10.1038/s41598-021-85038-3

  35. Youssef, A.M., Abd El-Aziz, M.E., Abouzeid, R.E.: A morphological and mechanical analysis of composites from modified bagasse fibers and recycled polyvinyl chloride. Polym. Compos. (2022). https://doi.org/10.1002/pc.26583

    Article  Google Scholar 

  36. Shen, T., Li, M.H., Zhang, B., Zhong, L.X., Lin, X.R., Yang, P.P., Li, M., Zhuang, W., Zhu, C.J., Ying, H.J.: Enhanced mechanical properties of polyvinyl chloride-based wood-plastic composites with pretreated corn stalk. Front. Bioeng. Biotechnol. 9 (2022). https://doi.org/10.3389/fbioe.2021.829821

  37. Wang, L., He, C.X.: Water resistance and flexural properties of three nano-fillers reinforced corn straw/polyvinyl chloride composites. J. Adhes. Sci. Technol. (2022). https://doi.org/10.1080/01694243.2021.2004740

    Article  Google Scholar 

  38. Oladele, I.O., Olayinka, M.O., Adelani, S.O., Borode, J.O.: Development of coconut fiber-corn cub ash hybrid reinforced polyvinyl chloride composites for shoe sole application. J. Nat. Fibers (2022). https://doi.org/10.1080/15440478.2022.2044426

    Article  Google Scholar 

  39. Majid, R.A., Ismail, H., Taib, R.M.: Processing, tensile, and thermal studies of poly(vinyl chloride)/epoxidized natural rubber/kenaf core powder composites with benzoyl chloride treatment. Polym.-Plast. Technol. Eng. 57(15), 1507–1517 (2018). https://doi.org/10.1080/03602559.2016.1211687

    Article  CAS  Google Scholar 

  40. Petchwattana, N., Sanetuntikul, J.: Static and dynamic mechanical properties of poly (vinyl chloride) and waste rice husk ash composites compatibilized with gamma-aminopropyltrimethoxysilane. SILICON 10(2), 287–292 (2018). https://doi.org/10.1007/s12633-016-9440-x

    Article  CAS  Google Scholar 

  41. Roman, K., Szabo, T.J., Marossy, K.: Rheological characterization of PVC corncob composites. Effect of molecule weight of PVC. In: 4th International Conference on Rheology and Modeling of Materials (IC-RMM)/1st European Conference on Silicon and Silica Based Materials. Hungary (2019)

    Google Scholar 

  42. Aouat, H., Hammiche, D., Boukerrou, A.: On the mechanical properties of composites based on wheat husk and polyvinyl chloride. In: 4th International Conference on Progress on Polymers and Composites Products and Manufacturing Technologies (POLCOM), SI ed., Electr Network (2020)

    Google Scholar 

  43. Darus, S., Ghazali, M.J., Azhari, C.H., Zulkifli, R., Shamsuri, A.A.: Mechanical properties of gigantochloa scortechinii bamboo particle reinforced semirigid polyvinyl chloride composites. Jurnal Teknologi 82(2), 15–22 (2020). https://doi.org/10.11113/jt.v82.13693

  44. Chaharsoughi, M.A., Najafi, S.K., Behrooz, R.: Formaldehyde emission from PVC-wood composites containing MDF sanding dust. J. Vinyl Add. Tech. 25(2), 159–164 (2019). https://doi.org/10.1002/vnl.21637

    Article  CAS  Google Scholar 

  45. Nadali, E., Naghdi, R.: Effects of multiple extrusions on structure-property relationships of hybrid wood flour/poly (vinyl chloride) composites. J. Thermoplast. Compos. Mater. (2020). https://doi.org/10.1177/0892705720930737

    Article  Google Scholar 

  46. Tran, T.H., Thai, H., Mai, H.D., Dao, H.Q., Nguyen, G.V.: Plasma treatment and TEOS modification on wood flour applied to composite of polyvinyl chloride/wood flour. Adv. Polym. Technol. 2019 (2019). https://doi.org/10.1155/2019/3974347

  47. Xing, J.C., Yang, K.Y., Zhou, Y.C., Yu, Y.X., Chang, J.M., Cai, L.P., Sheldon, S.Q.: Form-stable phase change material based on fatty acid/wood flour composite and PVC used for thermal energy storage. Energy Build. 209 (2020). https://doi.org/10.1016/j.enbuild.2019.109663

  48. Croitoru, C., Spirchez, C., Cristea, D., Lunguleasa, A., Pop, M.A., Bedo, T., Roata, I.C., Luca, M.A.: Calcium carbonate and wood reinforced hybrid PVC composites. J. Appl. Polym. Sci. 135(22) (2018). https://doi.org/10.1002/app.46317

  49. Ali, I., Ali, A., Ali, A., Ramzan, M., Hussain, K., Li, X.D., Jin, Z., Dias, O.A.T., Yang, W.M., Li, H.Y., Zhang, L.Y., Sain, M.: Highly electro-responsive composite gel based on functionally tuned graphene filled polyvinyl chloride. Polym. Adv. Technol. 32(9), 3679–3688 (2021). https://doi.org/10.1002/pat.5376

    Article  CAS  Google Scholar 

  50. Ali, I., Yang, W.M., Li, X.D., Ali, A., Jiao, Z.W., Xie, P.C., Dias, O.A.T., Pervaiz, M., Li, H.Y., Sain, M.: Highly electro-responsive plasticized PVC/FMWCNTs soft composites: a novel flex actuator with functional characteristics. Eur. Polymer J. 126 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109556

  51. Mirowski, J., Oliwa, R., Oleksy, M., Tomaszewska, J., Ryszkowska, J., Budzik, G.: Poly(vinyl chloride) composites with raspberry pomace filler. Polymers 13(7) (2021). https://doi.org/10.3390/polym13071079

  52. Ge, S.B., Zuo, S.D., Zhang, M.L., Luo, Y.H., Yang, R., Wu, Y.J., Zhang, Y., Li, J.Z., Xia, C.L.: Utilization of decayed wood for polyvinyl chloride/wood flour composites. J. Mater. Res. Technol. Jmr&T 12, 862–869 (2021). https://doi.org/10.1016/j.jmrt.2021.03.026

    Article  CAS  Google Scholar 

  53. Bendjaouahdou, C., Aidaoui, K.: Synthesis and characterization of polyvinyl chloride/wood flour/organoclay ternary composites. Polym. Polym. Compos. 29(9_SUPPL), S949–S958 (2021). https://doi.org/10.1177/09673911211031139

  54. Khaleghi, M.: Experimental and computational study of thermal behavior of PVC composites based on modified eggshell biofiller for UPVC product. J. Polym. Res. 29(1) (2022). https://doi.org/10.1007/s10965-021-02858-7

  55. Gohatre, O.K., Biswal, M., Mohanty, S., Nayak, S.K.: Study on thermal, mechanical and morphological properties of recycled poly(vinyl chloride)/fly ash composites. Polym. Int. 69(6), 552–563 (2020). https://doi.org/10.1002/pi.5988

    Article  CAS  Google Scholar 

  56. Gohatre, O.K., Biswal, M., Mohanty, S., Nayak, S.K.: Effect of silane treated fly ash on physico-mechanical, morphological, and thermal properties of recycled poly(vinyl chloride) composites. J. Appl. Polym. Sci. 138(19) (2021). https://doi.org/10.1002/app.50387

  57. Khoshnoud, P., Abu-Zahra, N.: Kinetics of thermal decomposition of PVC/fly ash composites. Int. J. Polym. Anal. Charact. 23(2), 170–180 (2018). https://doi.org/10.1080/1023666x.2017.1404668

    Article  CAS  Google Scholar 

  58. Khoshnoud, P., Abu-Zahra, N.: The effect of particle size of fly ash (FA) on the interfacial interaction and performance of PVC/FA composites. J. Vinyl Add. Tech. 25(2), 134–143 (2019). https://doi.org/10.1002/vnl.21633

    Article  CAS  Google Scholar 

  59. Xue, C.H., Nan, H., Lu, Y.H., Chen, H.Y., Zhao, C.Y., Xu, S.A.: Effects of inorganic-organic surface modification on the mechanical and thermal properties of poly(vinyl chloride) composites reinforced with fly-ash. Polym. Compos. 42(4), 1867–1877 (2021). https://doi.org/10.1002/pc.25942

    Article  CAS  Google Scholar 

  60. Ma, P.Y., Chen, H.Y., Zhang, Q.J., Wang, J., Xiang, L.: Preparation of hierarchical CaSO4 whisker and its reinforcing effect on PVC composites. J. Nanomater. 2018 (2018). https://doi.org/10.1155/2018/7803854

  61. Lu, Y.H., Li, X.W., Wu, C.F., Xu, S.A.: Comparison between polyether titanate and commercial coupling agents on the properties of calcium sulfate whisker/poly(vinyl chloride) composites. J. Alloy. Compd. 750, 197–205 (2018). https://doi.org/10.1016/j.jallcom.2018.03.301

    Article  CAS  Google Scholar 

  62. Zhang, Q.J., Ma, P.Y., Yang, Y.R., Pan, X.F., Zhang, J.F., Xiang, L.: Reinforcement of recycled paint slag hybrid-filled lightweight calcium sulphate whisker/PVC foam composites. J. Environ. Chem. Eng. 6(1), 520–526 (2018). https://doi.org/10.1016/j.jece.2017.12.025

    Article  CAS  Google Scholar 

  63. Wang, S.W., Liu, Y.Q., Chen, K., Xue, P., Lin, X.D., Jia, M.Y.: Thermal and mechanical properties of the continuous glass fibers reinforced PVC composites prepared by the wet powder impregnation technology. J. Polym. Res. 27(4) (2020). https://doi.org/10.1007/s10965-020-02063-y

  64. Wang, B., Lu, Y.H., Lu, Y.W.: Organic tin, calcium-zinc and titanium composites as reinforcing agents and its effects on the thermal stability of polyvinyl chloride. J. Therm. Anal. Calorim. 142(2), 671–683 (2020). https://doi.org/10.1007/s10973-020-09767-9

    Article  CAS  Google Scholar 

  65. Mallem, O.K., Zouai, F., Gumus, O.Y., Benabid, F.Z., Bedeloglu, A.C., Benachour, D.: Synergistic effect of talc/calcined kaolin binary fillers on rigid PVC: improved properties of PVC composites. J. Vinyl Add. Tech. 27(4), 881–893 (2021). https://doi.org/10.1002/vnl.21858

    Article  CAS  Google Scholar 

  66. Naji, A.M., Mohammed, I.Y., Al-Bayaty, S.A.: Mechanical and thermal degradation kinetic study of basalt filled polyvinyl chloride composite material. Egypt. J. Chem. 64(2), 893–901 (2021). https://doi.org/10.21608/ejchem.2020.35343.2739

  67. Jiang, L.P., Fu, J.J., Liu, L.H., Du, P.: Wear and thermal behavior of basalt fiber reinforced rice husk/polyvinyl chloride composites. J. Appl. Polym. Sci. 138(13) (2021). https://doi.org/10.1002/app.50094

  68. Lu, Y.H., Wu, C.F., Xu, S.A.: Mechanical, thermal and flame retardant properties of magnesium hydroxide filled poly(vinyl chloride) composites: The effect of filler shape. Compos. Part A Appl. Sci. Manuf. 113, 1–11 (2018). https://doi.org/10.1016/j.compositesa.2018.07.012

    Article  CAS  Google Scholar 

  69. Bi, Q.Y., Lu, Y.H., Zhao, C.Y., Ma, X.H., Khanal, S., Xu, S.A.: A facile approach to prepare anhydrous MgCO3 and its effect on the mechanical and flame retardant properties of PVC composites. J. Appl. Polym. Sci. 138(45) (2021). https://doi.org/10.1002/app.51349

  70. Lu, Y.H., Zhao, C.Y., Khanal, S., Xu, S.: Controllable synthesis of hierarchical nanostructured anhydrous MgCO3 and its effect on mechanical and thermal properties of PVC composites. Compos. Part A Appl. Sci. Manuf. 135 (2020). https://doi.org/10.1016/j.compositesa.2020.105926

  71. Ma, X.H., Lu, Y.H., Dang, L., Xu, S.A.: Effects of polyether titanate coupling agent on the flame retardancy and mechanical properties of soft poly(vinyl chloride)/basic magnesium carbonate composites. Polym. Compos. 41(9), 3594–3605 (2020). https://doi.org/10.1002/pc.25646

    Article  CAS  Google Scholar 

  72. Zhao, C.Y., Lu, Y.H., Zhao, X.H., Khanal, S., Xu, S.A.: Synthesis of MgCO(3)particles with different morphologies and their effects on the mechanical properties of rigid polyvinyl chloride composites. Polym. Plast. Technol. Mater. 60(3), 316–326 (2021). https://doi.org/10.1080/25740881.2020.1811314

    Article  CAS  Google Scholar 

  73. Zhang, W.X., Wu, H.R., Zhou, N., Cai, X.N., Zhang, Y.J., Hu, H.Y., Feng, Z.F., Huang, Z.Q., Liang, J.: Enhanced thermal stability and flame retardancy of poly(vinyl chloride) based composites by magnesium borate hydrate-mechanically activated lignin. J. Inorg. Organomet. Polym. Mater. 31(9), 3842–3856 (2021). https://doi.org/10.1007/s10904-021-02019-9

    Article  CAS  Google Scholar 

  74. Huo, Z.Y., Wu, H.J., Song, Q.Y., Zhou, Z.X., Wang, T., Xie, J.X., Qu, H.Q.: Synthesis of zinc hydroxystannate/reduced graphene oxide composites using chitosan to improve poly(vinyl chloride) performance. Carbohyd. Polym. 256 (2021). https://doi.org/10.1016/j.carbpol.2020.117575

  75. Song, Q.Y., Wu, H.J., Liu, H., Wang, T., Meng, W.H., Qu, H.Q.: Chitosan-regulated inorganic oxyacid salt flame retardants: preparation and application in PVC composites. J. Therm. Anal. Calorim. 146(4), 1629–1639 (2021). https://doi.org/10.1007/s10973-020-10170-7

    Article  CAS  Google Scholar 

  76. Abbas, Y.M., El-Khatib, A.M., Badawi, M.S., Alabsy, M.T., Hagag, O.M.: Gamma attenuation through nano lead—nano copper pvc composites. Nucl. Technol. Radiat. Protect. 36(1), 50–59 (2021). https://doi.org/10.2298/ntrp210110001a

    Article  CAS  Google Scholar 

  77. El-Khatib, A.M., Abbas, Y.M., Badawi, M.S., Hagag, O.M., Alabsy, M.T.: Gamma radiation shielding properties of recycled polyvinyl chloride composites reinforced with micro/nano-structured PbO and CuO particles. Phys. Scrip. 96(12) (2021). https://doi.org/10.1088/1402-4896/ac35c3

  78. Nunez-Briones, A.G., Benavides, R., Mendoza-Mendoza, E., Martinez-Pardo, M.E., Carrasco-Abrego, H., Kotzian, C., Saucedo-Zendejo, F.R., Garcia-Cerda, L.A.: Preparation of PVC/Bi2O3 composites and their evaluation as low energy X-Ray radiation shielding. Radiat. Phys. Chem. 179 (2021). https://doi.org/10.1016/j.radphyschem.2020.109198

  79. Poltabtim, W., Wimolmala, E., Markpin, T., Sombatsompop, N., Rosarpitak, V., Saenboonruang, K.: X-ray shielding, mechanical, physical, and water absorption properties of wood/PVC composites containing bismuth oxide. Polymers 13(13) (2021). https://doi.org/10.3390/polym13132212

  80. Abdolahzadeh, T., Morshedian, J., Ahmadi, S., Ay, M.R., Mohammadi, O.: Introducing a novel Polyvinyl chloride/Tungsten composites for shielding against gamma and X-ray radiations. Iran. J. Nucl. Med. 29(2), 58–64 (2021)

    CAS  Google Scholar 

  81. Waly, S.A., Abdelreheem, A.M., Shehata, M.M., Ghazy, O.A., Ali, Z.I.: Thermal stability, mechanical properties, and gamma radiation shielding performance of polyvinyl chloride/Pb(NO3)(2) composites. J. Polym. Eng. 41(9), 737–745 (2021). https://doi.org/10.1515/polyeng-2021-0067

    Article  CAS  Google Scholar 

  82. Gao, Y., Gao, X.Y., Li, J., Guo, S.Y.: Improved microwave absorbing property provided by the filler’s alternating lamellar distribution of carbon nanotube/carbonyl iron/poly (vinyl chloride) composites. Compos. Sci. Technol. 158, 175–185 (2018). https://doi.org/10.1016/j.compscitech.2017.11.029

    Article  CAS  Google Scholar 

  83. Gao, Y., Gao, X.Y., Li, J., Guo, S.Y.: Microwave absorbing and mechanical properties of alternating multilayer carbonyl iron powder-poly(vinyl chloride) composites. J. Appl. Polym. Sci. 135(12) (2018). https://doi.org/10.1002/app.45846

  84. Su, K.S., Mao, Z.P., Yang, Z.B., Zhang, J.: Preparation and characterization of PVC/CsxWO3 composite film with excellent near-infrared light shielding and high visible light transmission. J. Vinyl Add. Tech. 27(2), 356–366 (2021). https://doi.org/10.1002/vnl.21811

    Article  CAS  Google Scholar 

  85. Redhwi, H.H., Siddiqui, M.N., Andrady, A.L., Muhammad, Y., Syed, H.: Weatherability of conventional composites and nanocomposites of PVC and rutile titanium dioxide. Polym. Compos. 39(6), 2135–2141 (2018). https://doi.org/10.1002/pc.24176

    Article  CAS  Google Scholar 

  86. Xu, S., Xu, J., Zhang, J.: Surface topography and cooling effects in poly(vinyl chloride) (PVC)/titanium dioxide (TiO2) composites exposed to UV-irradiation. Iran. Polym. J. 27(12), 1011–1022 (2018). https://doi.org/10.1007/s13726-018-0671-0

    Article  CAS  Google Scholar 

  87. Jin, D.D., Xu, S.A.: The effects of polybenzimidazole and polyacrylic acid modified carbon black on the anti-UV-weathering and thermal properties of polyvinyl chloride composites. Compos. Sci. Technol. 167, 388–395 (2018). https://doi.org/10.1016/j.compscitech.2018.08.016

    Article  CAS  Google Scholar 

  88. Nguyen, T.D., Nguyen, C.T., Tran, V.T.T., Nguyen, G.V., Le, H.V., Tran, L.D., Bach, G.L., Thai, H.: Enhancement of the thermomechanical properties of a fly ash- and carbon black-filled polyvinyl chloride composite by using epoxidized soybean oil as a secondary bioplasticizer. Int. J. Polym. Sci. 2018 (2018). https://doi.org/10.1155/2018/8428736

  89. Li, Q.H., Shen, F., Ji, J.Q., Zhang, Y.J., Muhammad, Y., Huang, Z.Q., Hu, H.Y., Zhu, Y.P., Qin, Y.B.: Fabrication of graphite/MgO-reinforced poly(vinyl chloride) composites by mechanical activation with enhanced thermal properties. RSC Adv. 9(4), 2116–2124 (2019). https://doi.org/10.1039/c8ra09384a

    Article  CAS  Google Scholar 

  90. Lu, Y.H., Khanal, S., Ahmed, S., Xu, S.A.: Mechanical and thermal properties of poly(vinyl chloride) composites filled with carbon microspheres chemically modified by a biopolymer coupling agent. Compos. Sci. Technol. 172, 29–35 (2019). https://doi.org/10.1016/j.compscitech.2019.01.002

    Article  CAS  Google Scholar 

  91. Xiao, Y.Q., Chen, Z.M., Xin, B.J., Lin, L.T.: Preparation and characterization of graphene enriched poly(vinyl chloride) composites and fibers. J. Text. Inst. 109(8), 1008–1015 (2018). https://doi.org/10.1080/00405000.2017.1398059

    Article  CAS  Google Scholar 

  92. Xiao, Y.Q., Xin, B.J., Chen, Z.M., Lin, L.T., Liu, Y., Hu, Z.L.: Enhanced thermal properties of graphene-based poly (vinyl chloride) composites. J. Ind. Text. 48(8), 1348–1363 (2019). https://doi.org/10.1177/1528083718760805

    Article  CAS  Google Scholar 

  93. Abdel-Fattah, E., Alharthi, A.I., Fahmy, T.: Spectroscopic, optical and thermal characterization of polyvinyl chloride-based plasma-functionalized MWCNTs composite thin films. Appl. Phys. A Mater. Sci. Process. 125(7) (2019). https://doi.org/10.1007/s00339-019-2770-y

  94. Haruna, H., Pekdemir, M.E., Tukur, A., Coskun, M.: Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. J. Therm. Anal. Calorim. 139(6), 3887–3895 (2020). https://doi.org/10.1007/s10973-019-09184-7

    Article  CAS  Google Scholar 

  95. Mindivan, F., Goktas, M.: Green synthesis of reduced graphene oxide (RGNO)/polyvinylchloride (PVC) composites and their structural characterization. In: 5th International Conference on Powder Metallurgy and Advanced Materials, RoPM&AM 2017. Cluj Napoca, ROMANIA, pp. 143–151 (2017)

    Google Scholar 

  96. Mindivan, F., Goktas, M.: Preparation of new PVC composite using green reduced graphene oxide and its effects in thermal and mechanical properties. Polym. Bull. 77(4), 1929–1949 (2020). https://doi.org/10.1007/s00289-019-02831-x

    Article  CAS  Google Scholar 

  97. Zhang, H., Zhang, J.: Rheological behaviors of plasticized polyvinyl chloride thermally conductive composites with oriented flaky fillers: a case study on graphite and mica. J. Appl. Polym. Sci. 139(21) (2022). https://doi.org/10.1002/app.52186

  98. Faraji, M., Aydisheh, H.M.: Facile and scalable preparation of highly porous polyvinyl chloride-multi walled carbon nanotubes-polyaniline composite film for solid-state flexible supercapacitor. Compos. Part B Eng. 168, 432–441 (2019). https://doi.org/10.1016/j.compositesb.2019.03.060

    Article  CAS  Google Scholar 

  99. Wang, H.X., Liu, D., Du, P.C., Liu, P.: Facile deposition of polyaniline on the multi-walled carbon nanotubes/polyvinyl chloride composite films as flexible and robust electrodes for high performance supercapacitors. Electrochim. Acta 289, 104–111 (2018). https://doi.org/10.1016/j.electacta.2018.09.031

    Article  CAS  Google Scholar 

  100. Ali, S.F.A., Althobaiti, I.O., El-Rafey, E., Gad, E.S.: Wooden polymer composites of poly(vinyl chloride), olive pits flour, and precipitated bio-calcium carbonate. ACS Omega 6(37), 23924–23933 (2021). https://doi.org/10.1021/acsomega.1c02932

    Article  CAS  Google Scholar 

  101. Tao, J.S., Qin, Y.J., Zhang, P., Guo, Z.X.: Preparation and properties of polyvinyl chloride/carbon nanotubes composite. J. Wuhan Univ. Technol. Mater. Sci. Ed. 34(3), 516–520 (2019). https://doi.org/10.1007/s11595-019-2081-3

    Article  CAS  Google Scholar 

  102. Li, Q.H., Shen, F., Zhang, Y.J., Huang, Z.Q., Muhammad, Y., Hu, H.Y., Zhu, Y.P., Yu, C., Qin, Y.B.: Graphene incorporated poly(vinyl chloride) composites prepared by mechanical activation with enhanced electrical and thermo-mechanical properties. J. Appl. Polym. Sci. 137(7) (2020). https://doi.org/10.1002/app.48375

  103. Ismail, A.M., El-Newehy, M.H., El-Naggar, M.E., Moydeen, A.M., Menazea, A.A.: Enhancement the electrical conductivity of the synthesized polyvinylidene fluoride/polyvinyl chloride composite doped with palladium nanoparticles via laser ablation. J. Mater. Res. Technol. Jmr&T 9(5), 11178–11188 (2020). https://doi.org/10.1016/j.jmrt.2020.08.013

    Article  CAS  Google Scholar 

  104. Mussa, Z.H., Al-Qaim, F.F., Yuzir, A., Shameli, K.: Electrochemical degradation of metoprolol using graphite-PVC composite as anode: elucidation and characterization of new by-products using LC-TOF/MS. J. Mexican Chem. Soc. 64(3), 165–180 (2020). https://doi.org/10.29356/jmcs.v64i3.1139

  105. Chen, X., Gao, J.B., Song, Y.C., Gong, Y.P., Qi, M., Hao, R.L.: Fabrication of a high water flux conductive MWCNTs/PVC composite membrane with effective electrically enhanced antifouling behavior. Coatings 11(12) (2021). https://doi.org/10.3390/coatings11121548

  106. Ali, S.F.A., El Batouti, M., Abdelhamed, M., El-Rafey, E.: Formulation and characterization of new ternary stable composites: polyvinyl chloride-wood flour-calcium carbonate of promising physicochemical properties. J. Mater. Res. Technol. Jmr&T 9(6), 12840–12854 (2020). https://doi.org/10.1016/j.jmrt.2020.08.113

    Article  CAS  Google Scholar 

  107. Xiao, Y., Jiang, S.W., Li, Y.R., Zhang, W.L.: Screen-printed flexible negative temperature coefficient temperature sensor based on polyvinyl chloride/carbon black composites. Smart Mater. Struct. 30(2) (2021). https://doi.org/10.1088/1361-665X/abd83a

  108. Bartoszewicz, B., Lewenstam, A., Migdalski, J.: Solid-contact electrode with composite PVC-based 3D-printed membrane. Optimization of Fabrication and Performance. Sensors 21(14) (2021). https://doi.org/10.3390/s21144909

  109. Zhao, K., Sun, W.R., Zhang, X.T., Meng, J.K., Zhong, M., Qiang, L., Liu, M.J., Gu, B.N., Chung, C.C., Liu, M.C., Yu, F.C., Chueh, Y.L.: High-performance and long-cycle life of triboelectric nanogenerator using PVC/MoS2 composite membranes for wind energy scavenging application. Nano Energy 91 (2022). https://doi.org/10.1016/j.nanoen.2021.106649

  110. Halim, N.H.M., Adnan, R., Lahuri, A.H., Jaafar, N.F., Nordin, N.: Exploring the potential of highly efficient graphite/chitosan-PVC composite electrodes in the electrochemical degradation of Reactive Red 4. J. Chem. Technol. Biotechnol. 97(1), 147–159 (2022). https://doi.org/10.1002/jctb.6924

    Article  CAS  Google Scholar 

  111. Shen, X.N., Ji, M.Z., Zhang, S.M., Qin, Y.J., Zhang, P., Wang, Y.P., Guo, Z.X., Pan, M.W., Zhang, Z.Q.: Fabrication of multi-walled carbon-nanotube-grafted polyvinyl-chloride composites with high solar-thermal-conversion performance. Compos. Sci. Technol. 170, 77–84 (2019). https://doi.org/10.1016/j.compscitech.2018.11.029

    Article  CAS  Google Scholar 

  112. Shen, X.N., Yuan, L.H., Wei, Z., Qin, Y.J., Wang, Y.P., Guo, Z.X., Geng, L.L.: Fabrication of PVC/MWNTs-g-C-16 composites with high solar-thermal conversion performance for anti-icing and deicing. ScienceAsia 46(2), 169–177 (2020). https://doi.org/10.2306/scienceasia1513-1874.2020.023

    Article  CAS  Google Scholar 

  113. Berrag, A., Belkhiat, S., Madani, L.: Investigation of dielectric behavior of the PVC/BaTiO3 composite in low-frequencies. Int. J. Mod. Phys. B 32(9) (2018). https://doi.org/10.1142/s0217979218501102

  114. Uddin, S., Akhtar, N., Bibi, S., Zaman, A., Ali, A., Althubeiti, K., Alrobei, H., Mushtaq, M.: Effect of BaTiO3 on the properties of PVC-based composite thick films. Materials 14(18) (2021). https://doi.org/10.3390/ma14185430

  115. Wei, Z.B., Zhao, Y., Wang, C., Kuga, S., Huang, Y., Wu, M.: Antistatic PVC-graphene composite through plasticizer-mediated exfoliation of graphite. Chin. J. Polym. Sci. 36(12), 1361–1367 (2018). https://doi.org/10.1007/s10118-018-2160-5

    Article  CAS  Google Scholar 

  116. Islam, I., Sultana, S., Ray, S.K., Nur, H.P., Hossain, M.T., Ajmotgir, W.M.: Electrical and tensile properties of carbon black reinforced polyvinyl chloride conductive composites. C-J. Carbon Res. 4(1) (2018). https://doi.org/10.3390/c4010015

  117. Liu, H.L., Wang, C.R., Qin, Y., Huang, Y., Xiao, C.F.: Oriented structure design and evaluation of Fe3O4/o-MWCNTs/PVC composite membrane assisted by magnetic field. J. Taiwan Inst. Chem. Eng. 120, 278–290 (2021). https://doi.org/10.1016/j.jtice.2021.02.031

    Article  CAS  Google Scholar 

  118. Giannoukos, K., Salonitis, K.: Study of the mechanism of friction on functionally active tribological Polyvinyl Chloride (PVC)—aggregate composite surfaces. Tribol. Int. 141 (2020). https://doi.org/10.1016/j.triboint.2019.105906

  119. Zhang, W., Yang, H.H., Wang, J.: Effects of inorganic nanoparticle/PEG600 composite additives on properties of chlorinated polyvinyl chloride ultrafiltration membranes. Desalin. Water Treat. 142, 114–124 (2019). https://doi.org/10.5004/dwt.2019.23432

    Article  CAS  Google Scholar 

  120. Zhang, Y.F., Kan, W.J., Miao, J.J., Cheng, M.Z., Jing, Z.Z.: Hydrothermal synthesis of amino-PVC/DE composite and its adsorption performance for formaldehyde. Ind. Eng. Chem. Res. 60(35), 12934–12943 (2021). https://doi.org/10.1021/acs.iecr.1c02570

    Article  CAS  Google Scholar 

  121. Zhang, Y., Shi, Z.F., Sun, T.Y., Zhang, D.S., Zhang, X.P., Lin, X.X., Li, C., Wang, L.L., Song, J.J., Lin, Q.: The preparation of a novel eco-friendly methylene Blue/TiO2/PVC composite film and its photodegradability. Polym. Plast. Technol. Mater. 60(4), 358–368 (2021). https://doi.org/10.1080/25740881.2020.1811317

    Article  CAS  Google Scholar 

  122. Saeed, T., Naeem, A., Mahmood, T., Khan, A., Ahmad, Z., Hamayun, M., Khan, I.W., Khan, N.H.: Kinetic and thermodynamic studies of polyvinyl chloride composite of manganese oxide nanosheets for the efficient removal of dye from water. Water Sci. Technol. 84(4), 851–864 (2021). https://doi.org/10.2166/wst.2021.282

    Article  CAS  Google Scholar 

  123. Khan, Z.U., Khan, W.U., Ullah, B., Ali, W., Ahmad, B., Ali, W., Yap, P.S.: Graphene oxide/PVC composite papers functionalized with p-Phenylenediamine as high-performance sorbent for the removal of heavy metal ions. J. Environ. Chem. Eng. 9(5) (2021). https://doi.org/10.1016/j.jece.2021.105916

  124. Georgescu, M., Alexandrescu, L., Sonmez, M., Nituica, M., Stelescu, D., Gurau, D. Polymeric composites based on rigid PVC and zinc oxide nanoparticles. In: 7th International Conference on Advanced Materials and Systems. Bucharest, ROMANIA, pp. 331–336 (2018)

    Google Scholar 

  125. Stelescu, M.D., Alexandrescu, L., Sonmez, M., Georgescu, M., Nituica, M., Gurau, D.: Polymeric composites based on plastified pvc and zinc oxide nanoparticles. In: 7th International Conference on Advanced Materials and Systems. Bucharest, ROMANIA, pp. 159–164 (2018)

    Google Scholar 

  126. Miranda, C., Rodriguez-Llamazares, S., Castano, J., Mondaca, M.A.: Cu nanoparticles/PVC composites: thermal, rheological, and antibacterial properties. Adv. Polym. Technol. 37(3) (2018). https://doi.org/10.1002/adv.21740

  127. Aydin, I., Demirkir, C.: Activation of spruce wood surfaces by plasma treatment after long terms of natural surface inactivation. Plasma Chem. Plasma Process. 30(5), 697–706 (2010). https://doi.org/10.1007/s11090-010-9244-5

    Article  CAS  Google Scholar 

  128. Abd Jelil, R.: A review of low-temperature plasma treatment of textile materials. J. Mater. Sci. 50(18), 5913–5943 (2015). https://doi.org/10.1007/s10853-015-9152-4

    Article  CAS  Google Scholar 

  129. Cordeiro, R.C., Pacheco, L.V., Schierl, S., Viana, H., Simao, R.A.: Effects of different plasma treatments of short fibers on the mechanical properties of polypropylene-wood composites. Polym. Compos. 39(5), 1468–1479 (2018). https://doi.org/10.1002/pc.24087

    Article  CAS  Google Scholar 

  130. Jagadeesh, P., Puttegowda, M., Rangappa, S.M., Siengchin, S.: A review on extraction, chemical treatment, characterization of natural fibers and its composites for potential applications. Polym. Compos. 42(12), 6239–6264 (2021). https://doi.org/10.1002/pc.26312

    Article  CAS  Google Scholar 

  131. Hunnekens, B., Peters, F., Avramidis, G., Krause, A., Militz, H., Viol, W.: Plasma treatment of wood-polymer composites: a comparison of three different discharge types and their effect on surface properties. J. Appl. Polym. Sci. 133(18) (2016). https://doi.org/10.1002/app.43376

  132. Yanez-Pacios, A.J., Martin-Martinez, J.M.: Comparative adhesion, ageing resistance, and surface properties of wood plastic composite treated with low pressure plasma and atmospheric pressure plasma jet. Polymers 10(6) (2018). https://doi.org/10.3390/polym10060643

  133. Lionetto, F., Sannino, A., Maffezzoli, A.: Ultrasonic monitoring of the network formation in superabsorbent cellulose based hydrogels. Polymer 46(6), 1796–1803 (2005). https://doi.org/10.1016/j.polymer.2005.01.008

    Article  CAS  Google Scholar 

  134. Anbarasan, R., Jayaseharan, J., Sudha, M., Gopalan, A.: Sonochemical polymerization of acrylic acid and acrylamide in the presence of a new redox system—a comparative study. J. Appl. Polym. Sci. 89(13), 3685–3692 (2003). https://doi.org/10.1002/app.12546

    Article  CAS  Google Scholar 

  135. Mahbubul, I.M., Saidur, R., Amalina, M.A., Elcioglu, E.B., Okutucu-Ozyurt, T.: Effective ultrasonication process for better colloidal dispersion of nanofluid. Ultrason. Sonochem. 26, 361–369 (2015). https://doi.org/10.1016/j.ultsonch.2015.01.005

    Article  CAS  Google Scholar 

  136. Mallakpour, S., Sadaty, M.A.: Thiamine hydrochloride (vitamin B-1) as modifier agent for TiO2 nanoparticles and the optical, mechanical, and thermal properties of poly(vinyl chloride) composite films. RSC Adv. 6(95), 92596–92604 (2016). https://doi.org/10.1039/c6ra18597e

    Article  CAS  Google Scholar 

  137. Mallakpour, S., Shamsaddinimotlagh, S.: Ultrasonic-promoted rapid preparation of PVC/TiO2-BSA nanocomposites: characterization and photocatalytic degradation of methylene blue. Ultrason. Sonochem. 41, 361–374 (2018). https://doi.org/10.1016/j.ultsonch.2017.09.052

    Article  CAS  Google Scholar 

  138. Mallakpour, S., Javadpour, M.: An efficient preparation and characterization of nanocomposite films based on poly(vinyl chloride) and modified ZnO quantum dot with an optically active diacid containing amino acid as coupling agent. Polym.-Plast. Technol. Eng. 55(5), 498–509 (2016). https://doi.org/10.1080/03602559.2015.1098681

    Article  CAS  Google Scholar 

  139. Mallakpour, S., Javadpour, M.: Effective methodology for the production of novel nanocomposite films based on poly(vinyl chloride) and zinc oxide nanoparticles modified with green poly(vinyl alcohol). Polym. Compos. 38(9), 1800–1809 (2017). https://doi.org/10.1002/pc.23750

    Article  CAS  Google Scholar 

  140. Khaleghi, M., Didehban, K., Shabanian, M.: Simple and fast preparation of graphene oxide@ melamine terephthaldehyde and its PVC nanocomposite via ultrasonic irradiation: chemical and thermal resistance study. Ultrason. Sonochem. 43, 275–284 (2018). https://doi.org/10.1016/j.ultsonch.2017.12.049

    Article  CAS  Google Scholar 

  141. Hussein, M.A., Alam, M.M., Asiri, A.M., Al-amshany, Z.M., Hajeeassa, K.S., Rahman, M.M.: Ultrasonic-assisted fabrication of polyvinyl chloride/mixed graphene-carbon nanotube nanocomposites as a selective Ag+ ionic sensor. J. Compos. Mater. 53(16), 2271–2284 (2019). https://doi.org/10.1177/0021998318825293

    Article  CAS  Google Scholar 

  142. Allahbakhsh, A.: PVC/rice straw/SDBS-modified graphene oxide sustainable nanocomposites: melt mixing process and electrical insulation characteristics. Compos. Part A Appl. Sci. Manuf. 134 (2020). https://doi.org/10.1016/j.compositesa.2020.105902

  143. Jiang, L.P., He, C.X., Li, X.L., Fu, J.J.: Wear properties of wood-plastic composites pretreated with a stearic acid-palmitic acid mixture before exposure to degradative water conditions. Bioresources 13(2), 3817–3831 (2018). https://doi.org/10.15376/biores.13.2.3817-3831

  144. Lu, Y.H., Chen, Z.L., Lu, Y.W.: Synthesis, characterization and thermal behavior of plasticized poly (vinyl chloride) doped with folic acid-modified titanium dioxide. Sci. Rep. 12(1) (2022). https://doi.org/10.1038/s41598-022-07177-5

  145. Oladele, I.O., Michael, O.S., Adediran, A.A., Balogun, O.P., Ajagbe, F.O.: Acetylation treatment for the batch processing of natural fibers: effects on constituents, tensile properties and surface morphology of selected plant stem fibers. Fibers 8(12) (2020). https://doi.org/10.3390/fib8120073

  146. Sreekala, M.S., Thomas, S.: Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos. Sci. Technol. 63(6), 861–869 (2003). https://doi.org/10.1016/s0266-3538(02)00270-1

    Article  CAS  Google Scholar 

  147. Yasar, S., Icel, B.: Alkali modification of cotton (Gossypium hirsutum L.) stalks and its effect on properties of produced particleboards. Bioresources 11(3), 7191–7204 (2016). https://doi.org/10.15376/biores.11.3.7191-7204

  148. Abu Bakar, M.A., Ahmad, S., Kuntjoro, W.: The mechanical properties of treated and untreated kenaf fibre reinforced epoxy composite. J. Biobased Mater. Bioenergy 4(2), 159–163 (2010). https://doi.org/10.1166/jbmb.2010.1080

    Article  CAS  Google Scholar 

  149. Bui, Q.B., Colin, J., Nguyen, T.D., Mao, N.D., Nguyen, T.M.L., Perre, P.: Mechanical and thermal properties of a biocomposite based on polyvinylchloride/epoxidized natural rubber blend reinforced with rice husk microfiller. J. Thermoplast. Compos. Mater. 34(9), 1180–1192 (2021). https://doi.org/10.1177/0892705719857774

    Article  CAS  Google Scholar 

  150. Dutta, N., Maji, T.K.: Valorization of waste rice husk by preparing nanocomposite with polyvinyl chloride and montmorillonite clay. J. Thermoplast. Compos. Mater. 34(6), 801–816 (2021). https://doi.org/10.1177/0892705719854495

    Article  CAS  Google Scholar 

  151. Jiang, Z., Wang, J.W., Ge, R.K., Wu, C.J.: The effects of surface modification of ground calcium carbonate powdery fillers on the properties of PVC. Polym. Bull. 75(3), 1123–1139 (2018). https://doi.org/10.1007/s00289-017-2081-4

    Article  CAS  Google Scholar 

  152. Behboudi, A., Jafarzadeh, Y., Yegani, R.: Enhancement of antifouling and antibacterial properties of PVC hollow fiber ultrafiltration membranes using pristine and modified silver nanoparticles. J. Environ. Chem. Eng. 6(2), 1764–1773 (2018). https://doi.org/10.1016/j.jece.2018.02.031

    Article  CAS  Google Scholar 

  153. Baykus, O., Mutlu, A., Dogan, M.: The effect of pre-impregnation with maleated coupling agents on mechanical and water absorption properties of jute fabric reinforced polypropylene and polyethylene biocomposites. J. Compos. Mater. 50(2), 257–267 (2016). https://doi.org/10.1177/0021998315573288

    Article  Google Scholar 

  154. Daghigh, V., Lacy, T.E., Pittman, C.U., Daghigh, H.: Influence of maleated polypropylene coupling agent on mechanical and thermal behavior of latania fiber-reinforced PP/EPDM composites. Polym. Compos. 39, E1751–E1759 (2018). https://doi.org/10.1002/pc.24752

    Article  CAS  Google Scholar 

  155. Maziero, R., Soares, K., Filho, A.I., Franco, A.R., Rubio, J.C.C.: Maleated polypropylene as coupling agent for polypropylene composites reinforced with eucalyptus and pinus particles. Bioresources 14(2), 4774–4791 (2019). https://doi.org/10.15376/biores.14.2.4774-4791

  156. Oliver-Ortega, H., Reixach, R., Espinach, F.X., Mendez, J.A.: Maleic anhydride polylactic acid coupling agent prepared from solvent reaction: synthesis, characterization and composite performance. Materials 15(3). https://doi.org/10.3390/ma15031161

  157. Ratanawilai, T., Taneerat, K.: Alternative polymeric matrices for wood-plastic composites: effects on mechanical properties and resistance to natural weathering. Constr. Build. Mater. 172, 349–357 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.266

    Article  CAS  Google Scholar 

  158. Younes, M.M., Abdel-Rahman, H.A., Hamed, E.: Effect of gamma-irradiation on properties of polymer/fibrous/nanomaterials particleboard composites. J. Chem. Soc. Pak. 41(6), 966–974 (2019)

    CAS  Google Scholar 

  159. Shen, Z.L., Ye, Z., Li, K.L., Qi, C.S.: Effects of coupling agent and thermoplastic on the interfacial bond strength and the mechanical properties of oriented wood strand-thermoplastic composites. Polymers 13(23) (2021). https://doi.org/10.3390/polym13234260

  160. Wu, G.F., Ma, S.Y., Bai, Y., Zhang, H.X.: The surface modification of diatomite, thermal, and mechanical properties of poly(vinyl chloride)/diatomite composites. J. Vinyl Add. Tech. 25, E39–E47 (2019). https://doi.org/10.1002/vnl.21664

    Article  CAS  Google Scholar 

  161. Shi, H.L., Zhao, X.W., Li, Z.W., Yu, L.G., Li, X.H., Zhang, Z.J.: Bismuth oxychloride nanosheets for improvement of flexible poly (vinyl chloride) flame retardancy. J. Mater. Sci. 55(2), 631–643 (2020). https://doi.org/10.1007/s10853-019-04048-9

    Article  CAS  Google Scholar 

  162. Hezarjaribi, M., Bakeri, G., Sillanpaa, M., Chaichi, M.J., Akbari, S.: Novel adsorptive membrane through embedding thiol-functionalized hydrous manganese oxide into PVC electrospun nanofiber for dynamic removal of Cu(II) and Ni(II) ions from aqueous solution. J. Water Process Eng. 37 (2020). https://doi.org/10.1016/j.jwpe.2020.101401

  163. Ghalehno, M.D., Kord, B., Adlnasab, L.: A comparative study on effects of layered double hydroxide (LDH) and halloysite nanotube (HNT) on the physical, mechanical and dynamic mechanical properties of reed flour/polyvinyl chloride composites. J. Thermoplast. Compos. Mater. (2021). https://doi.org/10.1177/08927057211051772

    Article  Google Scholar 

  164. Zhang, Y.P., Ding, C., Zhang, N., Chen, C., Di, X.Y., Zhang, Y.H.: Surface modification of silica micro-powder by titanate coupling agent and its utilization in PVC based composite. Constr. Build. Mater. 307 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124933

  165. Izwan, S.M., Sapuan, S.M., Zuhri, M.Y.M., Muhamed, A.R.: Effect of benzoyl treatment on the performance of sugar palm/kenaf fiber-reinforced polypropylene hybrid composites. Text. Res. J. 92(5–6), 706–716 (2022). https://doi.org/10.1177/00405175211043248

    Article  CAS  Google Scholar 

  166. Salehi, R., Arami, M., Mahmoodi, N.M., Bahrami, H., Khorramfar, S.: Novel biocompatible composite (Chitosan-zinc oxide nanoparticle): Preparation, characterization and dye adsorption properties. Colloids Surf. B Biointerfaces 80(1), 86–93 (2010). https://doi.org/10.1016/j.colsurfb.2010.05.039

    Article  CAS  Google Scholar 

  167. Gong, J., Guo, W.H., Wang, K., Xiong, J.Y.: Surface modification of magnesium hydroxide sulfate hydrate whiskers and its toughness and reinforcement for polyvinyl chloride. Polym. Compos. 39(10), 3676–3685 (2018). https://doi.org/10.1002/pc.24396

    Article  CAS  Google Scholar 

  168. Xu, J.L., Lin, Y.G., Yang, W.L., Kang, C.H., Niu, L.: Application of nanometer antimony trioxide modified by dioctyl phthalate in polyvinyl chloride flame retardant materials. Mater. Res. Ibero Am. J. Mater. 23(6) (2020). https://doi.org/10.1590/1980-5373-mr-2020-0316

  169. Xu, K.M., Li, K.F., Zhong, T.H., Xie, C.P.: Interface self-reinforcing ability and antibacterial effect of natural chitosan modified polyvinyl chloride-based wood flour composites. J. Appl. Polym. Sci. 131(3) (2014). https://doi.org/10.1002/app.39854

  170. Pu, D.D., Liu, F.Y., Dong, Y.B., Ni, Q.Q., Fu, Y.Q.: Interfacial adhesion and mechanical properties of PET fabric/PVC composites enhanced by SiO2/tributyl citrate hybrid sizing. Nanomater. Basel 8(11). https://doi.org/10.3390/nano8110898

  171. Sun, S.S., Li, C.Z., Zhang, L., Du, H.L., Burnell-Gray, J.S.: Interfacial structures and mechanical properties of PVC composites reinforced by CaCO3 with different particle sizes and surface treatments. Polym. Int. 55(2), 158–164 (2006). https://doi.org/10.1002/pi.1932

    Article  CAS  Google Scholar 

  172. Zheng, Y.T., Cao, D.R., Wang, D.S., Chen, J.J.: Study on the interface modification of bagasse fibre and the mechanical properties of its composite with PVC. Compos. Part A Appl. Sci. Manuf. 38(1), 20–25 (2007). https://doi.org/10.1016/j.compositesa.2006.01.023

    Article  CAS  Google Scholar 

  173. Yuan, W.J., Cui, J.Y., Xu, S.A.: Mechanical properties and interfacial interaction of modified calcium sulfate whisker/poly(vinyl chloride) composites. J. Mater. Sci. Technol. 32(12), 1352–1360 (2016). https://doi.org/10.1016/j.jmst.2016.05.016

    Article  CAS  Google Scholar 

  174. Feng, Y.F., Qiu, H.R., Mao, B.S., Bo, M.L., Deng, Q.H.: Preparation of hybrid ceramic/PVC composites showing both high dielectric constant and breakdown strength ascribed to interfacial effect between V2C MXene and Cu2O. Colloids Surf. A Physicochem. Eng. Aspects 630 (2021). https://doi.org/10.1016/j.colsurfa.2021.127650

  175. Vandeginste, V.: Food waste eggshell valorization through development of new composites: a review. Sustain. Mater. Technol. 29 (2021). https://doi.org/10.1016/j.susmat.2021.e00317

  176. Toubia, E.A., Emami, S., Klosterman, D.: Degradation mechanisms of balsa wood and PVC foam sandwich core composites due to freeze/thaw exposure in saline solution. J. Sandwich Struct. Mater. 21(3), 990–1008 (2019). https://doi.org/10.1177/1099636217706895

    Article  Google Scholar 

  177. Olufsen, S.N., Clausen, A.H., Breiby, D.W., Hopperstad, O.S.: X-ray computed tomography investigation of dilation of mineral-filled PVC under monotonic loading. Mech. Mater. 142 (2020). https://doi.org/10.1016/j.mechmat.2019.103296

  178. Yuan, W.J., Lu, Y.H., Xu, S.A.: Synthesis of a new titanate coupling agent for the modification of calcium sulfate whisker in poly(vinyl chloride) composite. Materials 9(8) (2016). https://doi.org/10.3390/ma9080625

  179. Wang, H., Xie, G.Y., Fang, M.H., Ying, Z., Tong, Y., Zeng, Y.: Mechanical reinforcement of graphene/poly(vinyl chloride) composites prepared by combining the in-situ suspension polymerization and melt-mixing methods. Compos. Part B Eng. 113, 278–284 (2017). https://doi.org/10.1016/j.compositesb.2017.01.053

    Article  CAS  Google Scholar 

  180. Zhang, L., Luo, M.F., Sun, S.S., Ma, J., Li, C.Z.: Effect of surface structure of nano-CaCO3 particles on mechanical and rheological properties of PVC composites. J. Macromol. Sci. Part B Phys. 49(5), 970–982 (2010). https://doi.org/10.1080/00222341003609336

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerle Vandeginste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vandeginste, V., Madhav, D. (2024). Interface Modification and Characterization of PVC Based Composites and Nanocomposites. In: H, A., Sabu, T. (eds) Poly(Vinyl Chloride) Based Composites and Nanocomposites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45375-5_3

Download citation

Publish with us

Policies and ethics