Skip to main content

Relaxation Dynamics of Mean-Field Classical Spin Systems

  • Chapter
  • First Online:
Facets of Noise

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 214))

  • 120 Accesses

Abstract

In this chapter, we explore the facet of noise occurring in a finite-size system due to sampling of initial conditions and its interplay with that introduced through interaction with the environment. Within the ambit of a model long-range interacting system of classical Heisenberg spins, we pursue our study focusing specifically on the dynamical relaxation of the system to Boltzmann-Gibbs equilibrium. Considering the deterministic spin precessional dynamics, we reveal the full range of quasistationary behavior observed during the relaxation, whereby the system gets trapped in nonequilibrium states for times that diverge with the system size, and consequently exhibits a slow relaxation to equilibrium. By contrast, the corresponding stochastic dynamics, modeling the interaction of the system with the environment and constructed in the spirit of the stochastic Landau-Lifshitz-Gilbert equation, shows a fast relaxation to equilibrium on a size-independent timescale. In particular, no signature of quasistationarity is observed in this case when the noise is strong enough. We also observe similar fast relaxation in the Glauber Monte Carlo dynamics of the model. Our findings on the spin dynamics thus establish that the quasistationarity observed in deterministic dynamics is washed away by fluctuations induced through contact with the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let us remark that stochasticity in the sense of unpredictability (due to sensitive dependence on the initial conditions) may also result from chaos in fully-deterministic dynamical systems even when the dynamics is low-dimensional.

  2. 2.

    In this chapter, the Roman and the Greek indices are used to label the spins and the spin components, respectively.

  3. 3.

    In this regard, one may refer to the phenomenon of Jeans instability in a prototypical long-range system, the gravitational systems [9].

  4. 4.

    One may note that for the quadratic model (\(n=1\)) with \(\epsilon > \epsilon _c\), the quantity \(\langle \cos ^2\theta \rangle \) is strictly a constant for infinite N. For finite N, it however shows fluctuations about this constant value.

References

  1. A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480(3–6), 57 (2009). https://doi.org/10.1016/j.physrep.2009.07.001

    Article  ADS  MathSciNet  Google Scholar 

  2. F. Bouchet, S. Gupta, D. Mukamel, Phys. A 389(20), 4389 (2010). https://doi.org/10.1016/j.physa.2010.02.024

    Article  MathSciNet  Google Scholar 

  3. A. Campa, T. Dauxois, D. Fanelli, S. Ruffo, Physics of Long-Range Interacting Systems, 1st edn. (Oxford University Press, Oxford, 2014). https://doi.org/10.1093/acprof:oso/9780199581931.001.0001

  4. Y. Levin, R. Pakter, F.B. Rizzato, T.N. Teles, F.P.C. Benetti, Phys. Rep. 535(1), 1 (2014). https://doi.org/10.1016/j.physrep.2013.10.001

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Gupta, S. Ruffo, Int. J. Mod. Phys. A 32(09), 1741018 (2017). https://doi.org/10.1142/S0217751X17410184

    Article  ADS  Google Scholar 

  6. S. Gupta, D. Mukamel, J. Stat. Mech: Theory Exp. 2011(03), P03015 (2011). https://doi.org/10.1088/1742-5468/2011/03/P03015

    Article  Google Scholar 

  7. C.R. Lourenço, T.M. Rocha Filho, Phys. Rev. E 92(1), 012117 (2015). https://doi.org/10.1103/PhysRevE.92.012117

  8. J. Barré, S. Gupta, J. Stat. Mech: Theory Exp. 2014(2), P02017 (2014). https://doi.org/10.1088/1742-5468/2014/02/P02017

    Article  Google Scholar 

  9. J. Binney, S. Tremaine, Galactic Dynamics, 2nd edn. (Princeton University Press, Princeton, 2011)

    Book  Google Scholar 

  10. F. Baldovin, E. Orlandini, Phys. Rev. Lett. 96(24), 240602 (2006). https://doi.org/10.1103/PhysRevLett.96.240602

    Article  ADS  Google Scholar 

  11. F. Baldovin, E. Orlandini, Phys. Rev. Lett. 97(10), 100601 (2006). https://doi.org/10.1103/PhysRevLett.97.100601

    Article  ADS  Google Scholar 

  12. F. Baldovin, P.H. Chavanis, E. Orlandini, Phys. Rev. E 79(1), 011102 (2009). https://doi.org/10.1103/PhysRevE.79.011102

    Article  ADS  Google Scholar 

  13. M. Lakshmanan, Phil. Trans. R. Soc. A 369(1939), 1280 (2011). https://doi.org/10.1098/rsta.2010.0319

    Article  ADS  Google Scholar 

  14. R.J. Glauber, J. Math. Phys. 4(2), 294 (1963). https://doi.org/10.1063/1.1703954

    Article  ADS  MathSciNet  Google Scholar 

  15. P.L. Krapivsky, S. Redner, E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge University Press, New York, 2010)

    Book  Google Scholar 

  16. Z. Slanic, H. Gould, J. Tobochnik, Comput. Phys. 5(6), 630 (1991). https://doi.org/10.1063/1.4823032

    Article  ADS  Google Scholar 

  17. A. Patelli, S. Gupta, C. Nardini, S. Ruffo, Phys. Rev. E 85(2), 021133 (2012). https://doi.org/10.1103/PhysRevE.85.021133

    Article  ADS  Google Scholar 

  18. S. Ogawa, Y.Y. Yamaguchi, Phys. Rev. E 85(6), 061115 (2012). https://doi.org/10.1103/PhysRevE.85.061115

    Article  ADS  Google Scholar 

  19. Y.Y. Yamaguchi, Phys. Rev. E 94(1), 012133 (2016). https://doi.org/10.1103/PhysRevE.94.012133

    Article  ADS  Google Scholar 

  20. Y.Y. Yamaguchi, D. Das, S. Gupta, Phys. Rev. E 100(3), 032131 (2019). https://doi.org/10.1103/PhysRevE.100.032131

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, D., Gupta, S. (2023). Relaxation Dynamics of Mean-Field Classical Spin Systems. In: Facets of Noise. Fundamental Theories of Physics, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-031-45312-0_8

Download citation

Publish with us

Policies and ethics