Skip to main content

Bifurcation Behavior of a Nonlinear System by Introducing Noise

  • Chapter
  • First Online:
Facets of Noise

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 214))

  • 126 Accesses

Abstract

In this chapter, we unveil a useful facet of noise: we show how one may obtain the bifurcation behavior of a nonlinear dynamical system by introducing noise into its dynamics. This is done by adding a Gaussian, white noise term to the dynamics and then studying the resulting Langevin dynamics in the weak-noise limit. We show that the behavior of the noisy dynamics can be effectively captured via a conditional probability of observing microscopic configurations at a given instant, conditioned on having observed a given configuration at an earlier instant. We study this conditional probability for our model system by using two distinct approaches, namely, the Fokker-Planck and the path integral approach. An exact closed-form expression for the conditional probability can be obtained within the latter approach. By studying the long-time behavior of the conditional probability in the weak-noise limit, we show how to reconstruct the bifurcation diagram of the noiseless dynamics. All our predictions are validated with direct numerical integration of the dynamical equations of motion. This chapter is based on our published work, Ref. [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Das, S. Roy, S. Gupta, Commun. Nonlinear Sci. Numer. Simulat. 72, 575 (2019). https://doi.org/10.1016/j.cnsns.2019.01.018

    Article  ADS  Google Scholar 

  2. E. Ott, Chaos in Dynamical Systems, 2nd edn. (Cambridge University Press, Cambridge, 2002). https://doi.org/10.1017/CBO9780511803260

  3. M. Cross, H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge University Press, Cambridge, 2009). https://doi.org/10.1017/CBO9780511627200

  4. T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  5. R.P. Feynman, A.R. Hibbs, D.F. Styer, Quantum Mechanics and Path Integrals, emended. (Dover Publications, Mineola, 2010)

    Google Scholar 

  6. L.S. Schulman, Techniques and Applications of Path Integration (Dover Publications, Mineola, 2005)

    Google Scholar 

  7. M. Kac, Trans. Am. Math. Soc. 65(1), 1 (1949). https://doi.org/10.1090/S0002-9947-1949-0027960-X

    Article  MathSciNet  Google Scholar 

  8. M. Kac, in Second Berkeley Symposium on Mathematical Statistics and Probability (1951), pp. 189–215

    Google Scholar 

  9. E. Roldán, S. Gupta, Phys. Rev. E 96(2), 022130 (2017). https://doi.org/10.1103/PhysRevE.96.022130

    Article  ADS  MathSciNet  Google Scholar 

  10. C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, Berlin, 1983)

    Book  Google Scholar 

  11. J.L. Hindmarsh, R.M. Rose, Proc. R. Soc. Lond. B Biol. Sci. 221(1222), 87 (1984). https://doi.org/10.1098/rspb.1984.0024

    Article  ADS  Google Scholar 

  12. M. Storace, D. Linaro, E. de Lange, Chaos 18(3), 033128 (2008). https://doi.org/10.1063/1.2975967

    Article  ADS  MathSciNet  Google Scholar 

  13. S.H. Strogatz, Nonlinear Dynamics and Chaos (CRC Press, Boca Raton, 2018). https://doi.org/10.1201/9780429492563

  14. T.S. Doan, M. Engel, J.S.W. Lamb, M. Rasmussen, Nonlinearity 31(10), 4567 (2018). https://doi.org/10.1088/1361-6544/aad208

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, D., Gupta, S. (2023). Bifurcation Behavior of a Nonlinear System by Introducing Noise. In: Facets of Noise. Fundamental Theories of Physics, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-031-45312-0_7

Download citation

Publish with us

Policies and ethics