Skip to main content

Quantum Systems Subject to Random Projective Measurements

  • Chapter
  • First Online:
Facets of Noise

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 214))

Abstract

In contrast to the previous chapters, we deal in this chapter with quantum systems, and specifically, with the facet of noise in the sense of uncertainty associated with quantum measurements. This sort of noise is invariably of quantum origin, and we explore its manifestation in the set-up of a quantum system undergoing unitary evolution in time that is being repeatedly interrupted at random times with projective measurements collapsing the instantaneous state to the initial state of the system. Specifically, we ask: How does the survival probability, namely, the probability that an initial state survives even after a certain number m of measurements, behave as a function of m? We pursue our studies in the context of two paradigmatic quantum systems, one, the quantum random walk evolving in discrete times, and the other, the tight-binding model evolving in continuous time, with both defined on a one- dimensional periodic lattice constituted by a finite number of sites. We unveil a host of interesting results on the survival probability that point to the curious nature of quantum measurement dynamics. This chapter is based on our published work, Ref. [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter, we will take the Planck’s constant to be unity.

  2. 2.

    The time evolution shown in Fig. 10.2 follows the tight-binding model dynamics that we discuss later in Sect. 10.3.

  3. 3.

    We will use the notation \(p(\tau )\) (respectively, \(p_\tau \)) to denote the distribution for the case when \(\tau \) is a continuous (respectively, a discrete) random variable.

References

  1. D. Das, S. Gupta, J. Stat. Mech. 2022(3), 033212 (2022). https://doi.org/10.1088/1742-5468/ac5dc0

    Article  Google Scholar 

  2. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications, 2nd edn. (Wiley-VCH, Weinheim, 2020)

    Google Scholar 

  3. B. Misra, E.C.G. Sudarshan, J. Math. Phys. 18(4), 756 (1977). https://doi.org/10.1063/1.523304

    Article  ADS  Google Scholar 

  4. S. Gherardini, S. Gupta, F.S. Cataliotti, A. Smerzi, F. Caruso, S. Ruffo, New J. Phys. 18(1), 013048 (2016). https://doi.org/10.1088/1367-2630/18/1/013048

    Article  ADS  Google Scholar 

  5. Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A 48(2), 1687 (1993). https://doi.org/10.1103/PhysRevA.48.1687

    Article  ADS  Google Scholar 

  6. D.H. Dunlap, V.M. Kenkre, Phys. Rev. B 34(6), 3625 (1986). https://doi.org/10.1103/PhysRevB.34.3625

    Article  ADS  Google Scholar 

  7. D. Dunlap, V. Kenkre, Phys. Lett. A 127(8–9), 438 (1988). https://doi.org/10.1016/0375-9601(88)90213-7

    Article  ADS  Google Scholar 

  8. M.M. Müller, S. Gherardini, F. Caruso, Annalen der Physik 529(9), 1600206 (2017). https://doi.org/10.1002/andp.201600206

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Gherardini, C. Lovecchio, M.M. Müller, P. Lombardi, F. Caruso, F.S. Cataliotti, Quantum. Sci. Technol. 2(1), 015007 (2017). https://doi.org/10.1088/2058-9565/aa5d00

    Article  Google Scholar 

  10. S. Gherardini, L. Buffoni, M.M. Müller, F. Caruso, M. Campisi, A. Trombettoni, S. Ruffo, Phys. Rev. E 98(3), 032108 (2018). https://doi.org/10.1103/PhysRevE.98.032108

    Article  ADS  Google Scholar 

  11. H.V. Do, C. Lovecchio, I. Mastroserio, N. Fabbri, F.S. Cataliotti, S. Gherardini, M.M. Müller, N. Dalla Pozza, F. Caruso, New J. Phys. 21(11), 113056 (2019). https://doi.org/10.1088/1367-2630/ab5740

  12. R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer. Berlin, 2006). https://doi.org/10.1007/3-540-29060-5

  13. H. Touchette, Phys. Rep. 478(1–3), 1 (2009). https://doi.org/10.1016/j.physrep.2009.05.002

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Dhar, S. Dasgupta, A. Dhar, J. Phys. A: Math. Theor. 48(11), 115304 (2015). https://doi.org/10.1088/1751-8113/48/11/115304

    Article  ADS  Google Scholar 

  15. S. Dhar, S. Dasgupta, A. Dhar, D. Sen, Phys. Rev. A 91(6), 062115 (2015). https://doi.org/10.1103/PhysRevA.91.062115

    Article  ADS  Google Scholar 

  16. H. Friedman, D.A. Kessler, E. Barkai, J. Phys. A: Math. Theor. 50(4), 04LT01 (2017). https://doi.org/10.1088/1751-8121/aa5191

  17. H. Friedman, D.A. Kessler, E. Barkai, Phys. Rev. E 95(3), 032141 (2017). https://doi.org/10.1103/PhysRevE.95.032141

    Article  ADS  MathSciNet  Google Scholar 

  18. F. Thiel, E. Barkai, D.A. Kessler, Phys. Rev. Lett. 120(4), 040502 (2018). https://doi.org/10.1103/PhysRevLett.120.040502

    Article  ADS  MathSciNet  Google Scholar 

  19. F. Thiel, I. Mualem, D.A. Kessler, E. Barkai, Quantum total detection probability from repeated measurements II. Exploiting symmetry (2019). https://doi.org/10.48550/arXiv.1909.02114

  20. S. Lahiri, A. Dhar, Phys. Rev. A 99(1), 012101 (2019). https://doi.org/10.1103/PhysRevA.99.012101

    Article  ADS  Google Scholar 

  21. D. Meidan, E. Barkai, D.A. Kessler, J. Phys. A: Math. Theor. 52(35), 354001 (2019). https://doi.org/10.1088/1751-8121/ab3305

    Article  Google Scholar 

  22. R. Yin, K. Ziegler, F. Thiel, E. Barkai, Phys. Rev. Res. 1(3), 033086 (2019). https://doi.org/10.1103/PhysRevResearch.1.033086

    Article  Google Scholar 

  23. F. Thiel, I. Mualem, D. Meidan, E. Barkai, D.A. Kessler, Phys. Rev. Res. 2(4), 043107 (2020). https://doi.org/10.1103/PhysRevResearch.2.043107

    Article  Google Scholar 

  24. F. Thiel, I. Mualem, D.A. Kessler, E. Barkai, Phys. Rev. Res. 2(2), 023392 (2020). https://doi.org/10.1103/PhysRevResearch.2.023392

    Article  Google Scholar 

  25. V. Dubey, C. Bernardin, A. Dhar, Phys. Rev. A 103(3), 032221 (2021). https://doi.org/10.1103/PhysRevA.103.032221

    Article  ADS  Google Scholar 

  26. F. Thiel, I. Mualem, D. Kessler, E. Barkai, Entropy 23(5), 595 (2021). https://doi.org/10.3390/e23050595

    Article  ADS  Google Scholar 

  27. Q. Liu, K. Ziegler, D.A. Kessler, E. Barkai, Phys. Rev. Res. 4(2), 023129 (2022). https://doi.org/10.1103/PhysRevResearch.4.023129

    Article  Google Scholar 

  28. D.A. Kessler, E. Barkai, K. Ziegler, Phys. Rev. A 103(2), 022222 (2021). https://doi.org/10.1103/PhysRevA.103.022222

    Article  ADS  Google Scholar 

  29. A. Nayak, A. Vishwanath (2000). arXiv:quant-ph/0010117

  30. J. Kempe, Contemp. Phys. 44(4), 307 (2003). https://doi.org/10.1080/00107151031000110776

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, D., Gupta, S. (2023). Quantum Systems Subject to Random Projective Measurements. In: Facets of Noise. Fundamental Theories of Physics, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-031-45312-0_10

Download citation

Publish with us

Policies and ethics