Skip to main content

Exploring the Potential of Optimal Active Learning via a Non-myopic Oracle Policy

  • 264 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 14276)

Abstract

Active learning aims to reduce the amount of labeled data while maximizing machine learning models’ performances. Currently, there is sparse research on the potential of an optimal active learning strategy. Therefore, we propose a non-myopic oracle policy that accesses the true labels of the data pool to approximate an optimal active learning strategy. We evaluate how the hyperparameters of this oracle policy influence its performance and empirically demonstrate that it is an upper baseline for common active learning strategies while being faster than a state-of-the-art oracle policy. For the sake of reproducibility, all the code related to our research is publicly available on our GitHub repository at https://github.com/ies-research/non-myopic-oracle-policy.

Keywords

  • Active Learning
  • Oracle Policy
  • Classification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benavoli, A., Corani, G., Mangili, F.: Should we really use post-hoc tests based on mean-ranks? J. Mach. Learn. Res. 17(1), 152–161 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Chapelle, O.: Active learning for Parzen window classifier. In: International Conference on Artificial Intelligence and Statistics, pp. 49–56. Bridgetown, Barbados (2005)

    Google Scholar 

  3. Chaudhuri, A., Kakde, D., Sadek, C., Gonzalez, L., Kong, S.: The mean and median criteria for kernel bandwidth selection for support vector data description. In: International Conference on Data Mining Workshops, pp. 842–849. New Orleans, LA (2017)

    Google Scholar 

  4. Gissin, D., Shalev-Shwartz, S.: Discriminative active learning. arXiv:1907.06347 (2019)

  5. Huang, S.J., Jin, R., Zhou, Z.H.: Active learning by querying informative and representative examples. In: Advance in Neural. Information Processing System Vancouver, BC (2010)

    Google Scholar 

  6. Koshorek, O., Stanovsky, G., Zhou, Y., Srikumar, V., Berant, J.: On the limits of learning to actively learn semantic representations. In: Conference Comput. Nat. Lang. Learn. Hong Kong (2019)

    Google Scholar 

  7. Kottke, D., et al.: scikit-activeml: a library and toolbox for active learning algorithms. Preprints (2021)

    Google Scholar 

  8. Kottke, D., Krempl, G., Lang, D., Teschner, J., Spiliopoulou, M.: Multi-class probabilistic active learning. In: European Conference on Artificial Intelligence, pp. 586–594. The Hague, Netherlands (2016)

    Google Scholar 

  9. Kumar, P., Gupta, A.: Active learning query strategies for classification, regression, and clustering: a survey. J. Comput. Sci. Technol. 35(4), 913–945 (2020). https://doi.org/10.1007/s11390-020-9487-4

    CrossRef  Google Scholar 

  10. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: International Conference Research Development in Information Retrieval, pp. 3–12. Dublin, Ireland (1994)

    Google Scholar 

  11. Nguyen, V.-L., Destercke, S., Hüllermeier, E.: Epistemic uncertainty sampling. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds.) DS 2019. LNCS (LNAI), vol. 11828, pp. 72–86. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33778-0_7

    CrossRef  Google Scholar 

  12. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Conference on Learnimg Theory, pp. 287–294. Pittsburgh, PA (1992)

    Google Scholar 

  13. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explor. 15(2), 49–60 (2013)

    CrossRef  Google Scholar 

  14. Zhou, Y., Renduchintala, A., Li, X., Wang, S., Mehdad, Y., Ghoshal, A.: Towards Understanding the Behaviors of Optimal Deep Active Learning Algorithms. In: International Conference on Artificial Intelligence and Statistics, pp. 1486–1494. Virtual (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Sandrock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sandrock, C., Herde, M., Kottke, D., Sick, B. (2023). Exploring the Potential of Optimal Active Learning via a Non-myopic Oracle Policy. In: Bifet, A., Lorena, A.C., Ribeiro, R.P., Gama, J., Abreu, P.H. (eds) Discovery Science. DS 2023. Lecture Notes in Computer Science(), vol 14276. Springer, Cham. https://doi.org/10.1007/978-3-031-45275-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45275-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45274-1

  • Online ISBN: 978-3-031-45275-8

  • eBook Packages: Computer ScienceComputer Science (R0)