Abstract
Linking models and brain measures offers a number of advantages over standard analyses. Models that have been evaluated on previous datasets can provide theoretical constraints and assist in integrating findings across studies. Model-based analyses can be more sensitive and allow for evaluation of hypotheses that would not otherwise be addressable. For example, a cognitive model that is informed from several behavioural studies could be used to examine how multiple cognitive processes unfold across time in the brain. Models can be linked to brain measures in a number of ways. The information flow and constraints can be from model to brain, brain to model, or reciprocal. Likewise, the linkage from model and brain can be univariate or multivariate, as in studies that relate patterns of brain activity with model states. Models have multiple aspects that can be related to different facets of brain activity. This is well illustrated by deep learning models that have multiple layers or representations that can be aligned with different brain regions.
Model-based approaches offer a lens on brain data that is complementary to popular multivariate decoding and representational similarity analysis approaches. Indeed, these approaches can realise greater theoretical significance when situated within a model-based approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Adams, R. A., Huys, Q. J. M., & Roiser, J. P. (2015). Computational psychiatry: Towards a mathematically informed understanding of mental illness. Journal of Neurology, Neurosurgery & Psychiatry, jnnp-2015-310737. https://doi.org/10.1136/jnnp-2015-310737
Ahlheim, C., & Love, B. C. (2018). Estimating the functional dimensionality of neural representations. NeuroImage, 179, 51–62. https://doi.org/10.1016/j.neuroimage.2018.06.015
Anderson, J. R. (1991). The adaptive nature of human categorization. Psychological Review, 98, 409–429.
Anderson, J. R., Borst, J. P., Fincham, J. M., Ghuman, A. S., Tenison, C., & Zhang, Q. (2018). The common time course of memory processes revealed. Psychological Science, 29(9), 1463–1474. https://doi.org/10.1177/0956797618774526
Bashivan, P., Kar, K., & DiCarlo, J. J. (2019). Neural population control via deep image synthesis. Science, 364(6439), eaav9436. https://doi.org/10.1126/science.aav9436
Bechtel, W., & Richardson, R. C. (1993). Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton University Press.
Berens, S. C., Horst, J. S., & Bird, C. M. (2018). Cross-situational learning is supported by propose-but-verify hypothesis testing. Current Biology, 28(7), 1132–1136.e5. https://doi.org/10.1016/j.cub.2018.02.042
Bilenko, N. Y., & Gallant, J. L. (2016). Pyrcca: Regularized kernel canonical correlation analysis in python and its applications to neuroimaging. Frontiers in Neuroinformatics, 10. https://doi.org/10.3389/fninf.2016.00049
Blanco, N. J., Otto, A. R., Maddox, W. T., Beevers, C. G., & Love, B. C. (2013). The influence of depression symptoms on exploratory decision-making. Cognition, 129(3), 563–568. https://doi.org/10.1016/j.cognition.2013.08.018
Bobadilla-Suarez, S., Ahlheim, C., Mehrotra, A., Panos, A., & Love, B. C. (2019). Measures of neural similarity. Computational Brain & Behavior. https://doi.org/10.1007/s42113-019-00068-5
Braunlich, K., & Love, B. C. (2019). Occipitotemporal representations reflect individual differences in conceptual knowledge. Journal of Experimental Psychology: General, 148(7), 1192–1203. https://doi.org/10.1037/xge0000501
Busemeyer, J. R., & Townsend, J. (1993). Decision field theory: A dynamic-cognitive approach to decision-making in an uncertain environment. Psychological Review, 100, 432–459.
Caplan, J. B., & Madan, C. R. (2016). Word imageability enhances association-memory by increasing hippocampal engagement. Journal of Cognitive Neuroscience, 28(10), 1522–1538. https://doi.org/10.1162/jocn_a_00992
Cetron, J. S., Connolly, A. C., Diamond, S. G., May, V. V., Haxby, J. V., & Kraemer, D. J. M. (2019). Decoding individual differences in STEM learning from functional MRI data. Nature Communications, 10(1), 2027. https://doi.org/10.1038/s41467-019-10053-y
Churchland, P. S., Koch, C., & Sejnowski, T. J. (1990). What is computational neuroscience? In Computational neuroscience (pp. 46–55). MIT Press.
Davis, T., Love, B. C., & Preston, A. R. (2012a). Learning the exception to the rule: Model-based FMRI reveals specialized representations for surprising category members. Cerebral Cortex, 22(2), 260–273. https://doi.org/10.1093/cercor/bhr036
Davis, T., Love, B. C., & Preston, A. R. (2012b). Striatal and hippocampal entropy and recognition signals in category learning: Simultaneous processes revealed by model-based fMRI. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(4), 821–839. https://doi.org/10.1037/a0027865
Davis, T., Xue, G., Love, B. C., Preston, A. R., & Poldrack, R. A. (2014). Global neural pattern similarity as a common basis for categorization and recognition memory. Journal of Neuroscience, 34(22), 7472–7484. https://doi.org/10.1523/JNEUROSCI.3376-13.2014
Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879.
Dawson, M. R. W. (2013). Mind, body, world: Foundations of cognitive science. Athabasca University Press.
De Martino, B., Bobadilla-Suarez, S., Nouguchi, T., Sharot, T., & Love, B. C. (2017). Social information is integrated into value and confidence judgments according to its reliability. The Journal of Neuroscience, 37(25), 6066–6074. https://doi.org/10.1523/JNEUROSCI.3880-16.2017
Dimsdale-Zucker, H. R., & Ranganath, C. (2018). Representational similarity analyses. In Handbook of behavioral neuroscience (Vol. 28, pp. 509–525). Elsevier. https://doi.org/10.1016/B978-0-12-812028-6.00027-6
Ditterich, J. (2010). A comparison between mechanisms of multi-alternative perceptual decision making: Ability to explain human behavior, predictions for neurophysiology, and relationship with decision theory. Frontiers in Neuroscience, 4. https://doi.org/10.3389/fnins.2010.00184
Forstmann, B. U., Wagenmakers, E.-J., Eichele, T., Brown, S., & Serences, J. T. (2011). Reciprocal relations between cognitive neuroscience and formal cognitive models: Opposites attract? Trends in Cognitive Sciences, 15(6), 272–279. https://doi.org/10.1016/j.tics.2011.04.002
Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273–1302. https://doi.org/10.1016/S1053-8119(03)00202-7
Gluth, S., Sommer, T., Rieskamp, J., & Büchel, C. (2015). Effective connectivity between hippocampus and ventromedial prefrontal cortex controls preferential choices from memory. Neuron, 86(4), 1078–1090. https://doi.org/10.1016/j.neuron.2015.04.023
Guclu, U., & van Gerven, M. A. J. (2015). Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. Journal of Neuroscience, 35(27), 10005–10014. https://doi.org/10.1523/JNEUROSCI.5023-14.2015
Guest, O., & Love, B. C. (2017). What the success of brain imaging implies about the neural code. eLife, 6, e21397. https://doi.org/10.7554/eLife.21397
Haxby, J. V. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425–2430. https://doi.org/10.1126/science.1063736
Haxby, J. V., Guntupalli, J. S., Connolly, A. C., Halchenko, Y. O., Conroy, B. R., Gobbini, M. I., Hanke, M., & Ramadge, P. J. (2011). A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron, 72(2), 404–416. https://doi.org/10.1016/j.neuron.2011.08.026
Inhoff, M. C., Libby, L. A., Noguchi, T., Love, B. C., & Ranganath, C. (2018). Dynamic integration of conceptual information during learning. PLoS One, 13(11), e0207357. https://doi.org/10.1371/journal.pone.0207357
Jones, M., & Love, B. C. (2011a). Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. The Behavioral and Brain Sciences, 34(4), 169–188. https://doi.org/10.1017/S0140525X10003134. discussion 188–231.
Jones, M., & Love, B. C. (2011b). Pinning down the theoretical commitments of Bayesian cognitive models. Behavioral and Brain Sciences, 34(4), 215–231. https://doi.org/10.1017/S0140525X11001439
Khaligh-Razavi, S.-M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Computational Biology, 10(11), e1003915. https://doi.org/10.1371/journal.pcbi.1003915
Kragel, J. E., Morton, N. W., & Polyn, S. M. (2015). Neural activity in the medial temporal lobe reveals the fidelity of mental time travel. Journal of Neuroscience, 35(7), 2914–2926. https://doi.org/10.1523/JNEUROSCI.3378-14.2015
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in neural information processing systems 25 (pp. 1097–1105). Curran Associates, Inc..
Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99, 22–44.
Kubilius, J., Schrimpf, M., Nayebi, A., Bear, D., Yamins, D. L. K., & DiCarlo, J. J. (2018). CORnet: Modeling the neural mechanisms of core object recognition [Preprint]. Neuroscience. https://doi.org/10.1101/408385
Lambon Ralph, M. A., Lowe, C., & Rogers, T. T. (2006). Neural basis of category-specific semantic deficits for living things: Evidence from semantic dementia, HSVE and a neural network model. Brain, 130(4), 1127–1137. https://doi.org/10.1093/brain/awm025
Lee, S.-H., Kravitz, D. J., & Baker, C. I. (2019). Differential representations of perceived and retrieved visual information in hippocampus and cortex. Cerebral Cortex, 29(10), 4452–4461. https://doi.org/10.1093/cercor/bhy325
Lindsay, G. W., & Miller, K. D. (2018). How biological attention mechanisms improve task performance in a large-scale visual system model. eLife, 7, e38105. https://doi.org/10.7554/eLife.38105
Love, B. C. (2015). The algorithmic level is the bridge between computation and brain. Topics in Cognitive Science, 7(2), 230–242. https://doi.org/10.1111/tops.12131
Love, B. C. (2020a). Levels of biological plausibility. Philosophical Transactions of the Royal Society B. https://doi.org/10.1098/rstb.2019.0632
Love, B. C. (2020b). Model-based fMRI analysis of memory. Current Opinion in Behavioral Sciences, 32, 88–93. https://doi.org/10.1016/j.cobeha.2020.02.012
Love, B. C., & Gureckis, T. M. (2007). Models in search of a brain. Cognitive, Affective, & Behavioral Neuroscience, 7(2), 90–108.
Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of category learning. Psychological Review, 111(2), 309–332. https://doi.org/10.1037/0033-295X.111.2.309
Mack, M. L., Preston, A. R., & Love, B. C. (2013). Decoding the brain’s algorithm for categorization from its neural implementation. Current Biology, 23, 2023–2027.
Mack, M. L., Love, B. C., & Preston, A. R. (2016). Dynamic updating of hippocampal object representations reflects new conceptual knowledge. Proceedings of the National Academy of Sciences, 113(46), 13203–13208. https://doi.org/10.1073/pnas.1614048113
Mack, M. L., Love, B. C., & Preston, A. R. (2018). Building concepts one episode at a time: The hippocampus and concept formation. Neuroscience Letters, 680, 31–38. https://doi.org/10.1016/j.neulet.2017.07.061
Mack, M. L., Preston, A. R., & Love, B. C. (2020). Ventromedial prefrontal cortex compression during concept learning. Nature Communications, 11(1), 46. https://doi.org/10.1038/s41467-019-13930-8
Marr, D. (1982). Vision. W. H. Freeman.
Martin, C. B., Douglas, D., Newsome, R. N., Man, L. L., & Barense, M. D. (2018). Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream. eLife, 7, e31873. https://doi.org/10.7554/eLife.31873
Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207–238.
Mok, R. M., & Love, B. C. (2019). A non-spatial account of place and grid cells based on clustering models of concept learning. Nature Communications, 10(1), 5685. https://doi.org/10.1038/s41467-019-13760-8
Molloy, M. F., Bahg, G., Lu, Z.-L., & Turner, B. M. (2019). Individual differences in the neural dynamics of response inhibition. Journal of Cognitive Neuroscience, 31(12), 1976–1996. https://doi.org/10.1162/jocn_a_01458
Momennejad, I., Otto, A. R., Daw, N. D., & Norman, K. A. (2018). Offline replay supports planning in human reinforcement learning. eLife, 7, e32548. https://doi.org/10.7554/eLife.32548
Morcos, A., Raghu, M., & Bengio, S. (2018). Insights on representational similarity in neural networks with canonical correlation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information processing systems 31 (pp. 5727–5736). Curran Associates, Inc. http://papers.nips.cc/paper/7815-insights-on-representational-similarity-in-neural-networks-with-canonical-correlation.pdf
Newell, A. (1980). Physical symbol systems*. Cognitive Science, 4(2), 135–183. https://doi.org/10.1207/s15516709cog0402_2
Newell, A. (1990). Unified theories of cognition. Harvard University Press.
Niv, Y. (2019). Learning task-state representations. Nature Neuroscience, 22(10), 1544–1553. https://doi.org/10.1038/s41593-019-0470-8
Nosofsky, R. M. (1986). Attention, similairty, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115, 39–57.
Nosofsky, R. M., & Zaki, S. F. (1998). Dissociations between categorization and recognition in amnesic and normal individuals. Psychological Science, 9, 247–255.
Nosofsky, R. M., Little, D. R., & James, T. W. (2012). Activation in the neural network responsible for categorization and recognition reflects parameter changes. Proceedings of the National Academy of Sciences of the United States of America, 109(1), 333–338. https://doi.org/10.1073/pnas.1111304109
Palmeri, T. J., Schall, J. D., & Logan, G. D. (2015). In J. R. Busemeyer, Z. Wang, J. T. Townsend, & A. Eidels (Eds.), Neurocognitive modeling of perceptual decision making (Vol. 1). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199957996.013.15
Pitt, M. A., Myung, I., & Zhang, S. (2002). Toward a method of selecting among computational models of cognition. Psychological Review, 109, 472–491.
Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context maintenance and retrieval model of organizational processes in free recall. Psychological Review, 116(1), 129–156. https://doi.org/10.1037/a0014420
Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2010). Neurally constrained modeling of perceptual decision making. Psychological Review, 117(4), 1113–1143. https://doi.org/10.1037/a0020311
Purcell, B. A., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2012). From salience to saccades: Multiple-alternative gated stochastic accumulator model of visual search. Journal of Neuroscience, 32(10), 3433–3446. https://doi.org/10.1523/JNEUROSCI.4622-11.2012
Pylyshyn, Z. W. (1984). Computation and cognition. Toward a foundation for cognitive science. MIT Press.
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.
Ritchie, J. B., & Op de Beeck, H. (2019a). Using neural distance to predict reaction time for categorizing the animacy, shape, and abstract properties of objects. Scientific Reports, 9(1), 13201. https://doi.org/10.1038/s41598-019-49732-7
Ritchie, J. B., & Op de Beeck, H. (2019b). A varying role for abstraction in models of category learning constructed from neural representations in early visual cortex. Journal of Cognitive Neuroscience, 31(1), 155–173. https://doi.org/10.1162/jocn_a_01339
Roads, B. D., & Love, B. C. (2019). Learning as the unsupervised alignment of conceptual systems. ArXiv:1906.09012 [Cs, Stat]. http://arxiv.org/abs/1906.09012
Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition; Volume 1: Foundations. MIT Press.
Seger, C. A., Braunlich, K., Wehe, H. S., & Liu, Z. (2015). Generalization in category learning: The roles of representational and decisional uncertainty. Journal of Neuroscience, 35(23), 8802–8812. https://doi.org/10.1523/JNEUROSCI.0654-15.2015
Shadlen, M. N., & Kiani, R. (2013). Decision making as a window on cognition. Neuron, 80(3), 791–806. https://doi.org/10.1016/j.neuron.2013.10.047
Shanahan, L. K., Gjorgieva, E., Paller, K. A., Kahnt, T., & Gottfried, J. A. (2018). Odor-evoked category reactivation in human ventromedial prefrontal cortex during sleep promotes memory consolidation. eLife, 7, e39681. https://doi.org/10.7554/eLife.39681
Shen, G., Horikawa, T., Majima, K., & Kamitani, Y. (2019). Deep image reconstruction from human brain activity. PLoS Computational Biology, 15(1), e1006633. https://doi.org/10.1371/journal.pcbi.1006633
Spiers, H. J., Love, B. C., Le Pelley, M. E., Gibb, C. E., & Murphy, R. A. (2017). Anterior temporal lobe tracks the formation of prejudice. Journal of Cognitive Neuroscience, 29(3), 530–544. https://doi.org/10.1162/jocn_a_01056
Spiers, H. J., Olafsdottir, H. F., & Lever, C. (2018). Hippocampal CA1 activity correlated with the distance to the goal and navigation performance. Hippocampus, 28(9), 644–658. https://doi.org/10.1002/hipo.22813
Stillesjö, S., Nyberg, L., & Wirebring, L. K. (2019). Building memory representations for exemplar-based judgment: A role for ventral precuneus. Frontiers in Human Neuroscience, 13, 228. https://doi.org/10.3389/fnhum.2019.00228
Sun, R. (2009). Theoretical status of computational cognitive modeling. Cognitive Systems Research, 10(2), 124–140. https://doi.org/10.1016/j.cogsys.2008.07.002
Tanenhaus, M., Spivey-Knowlton, M., Eberhard, K., & Sedivy, J. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268(5217), 1632–1634. https://doi.org/10.1126/science.7777863
Tubridy, S., Halpern, D., Davachi, L., & Gureckis, T. M. (2018). A neurocognitive model for predicting the fate of individual memories [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/7r3jp
Turner, B. M., Forstmann, B. U., Love, B. C., Palmeri, T. J., & Van Maanen, L. (2017). Approaches to analysis in model-based cognitive neuroscience. Journal of Mathematical Psychology, 76, 65–79.
Turner, B. M., Forstmann, B. U., & Steyvers, M. (2019a). Joint models of neural and behavioral data. Springer International Publishing. https://doi.org/10.1007/978-3-030-03688-1
Turner, B. M., Palestro, J. J., Miletić, S., & Forstmann, B. U. (2019b). Advances in techniques for imposing reciprocity in brain-behavior relations. Neuroscience & Biobehavioral Reviews, 102, 327–336. https://doi.org/10.1016/j.neubiorev.2019.04.018
Tyler, L. K., Moss, H. E., Durrant-Peatfield, M. R., & Levy, J. P. (2000). Conceptual structure and the structure of concepts: A distributed account of category-specific deficits. Brain and Language, 75(2), 195–231. https://doi.org/10.1006/brln.2000.2353
Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108(3), 550–592. https://doi.org/10.1037/0033-295X.108.3.550
van Gerven, M. A. J. (2017). A primer on encoding models in sensory neuroscience. Journal of Mathematical Psychology, 76, 172–183. https://doi.org/10.1016/j.jmp.2016.06.009
Wang, J. X., & Voss, J. L. (2014). Brain networks for exploration decisions utilizing distinct modeled information types during contextual learning. Neuron, 82(5), 1171–1182. https://doi.org/10.1016/j.neuron.2014.04.028
Wijeakumar, S., Ambrose, J. P., Spencer, J. P., & Curtu, R. (2017). Model-based functional neuroimaging using dynamic neural fields: An integrative cognitive neuroscience approach. Journal of Mathematical Psychology, 76, 212–235. https://doi.org/10.1016/j.jmp.2016.11.002
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118
Xue, G. (2018). The neural representations underlying human episodic memory. Trends in Cognitive Sciences, 22(6), 544–561. https://doi.org/10.1016/j.tics.2018.03.004
Yamins, D. L. K., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19(3), 356–365. https://doi.org/10.1038/nn.4244
Acknowledgements
This work was supported by the NIH Grant 1P01HD080679, ESRC grant (ES/W007347/1), Wellcome Trust Investigator Award WT106931MA, and Royal Society Wolfson Fellowship 183029 to B.C.L. Although mostly original, this paper draws on some previously published work (Love, 2020a, b; Turner et al., 2017). Thanks to Sebastian Bobadilla-Suarez for helpful comments on a previous draft.
Conflict of Interest
Nothing declared.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Questions for Consideration
Model-based analyses can offer additional theoretical constraints but can also introduce degrees of freedom when choosing which model-based analysis to conduct. How should one choose which model-based analysis to conduct?
How much should we demand of researchers in terms of verifying their models before conducting a model-based analysis given that the analysis is only as good as the model used?
Will behavioural studies be increasingly valued as one avenue to verify models for model-based neuroscience?
The motivation for a model-based analysis can involve more than the model itself to include the bridge theory that links model components to brain regions. How does one choose between this focused, top-down approach to model application and a bottom-up, data-driven approach?
Models can be specified at multiple levels of abstraction (see “levels of mechanism” discussion). Why is it rare to have multiple models for the same task that differ in their level of abstraction?
Further Reading
-
Love, B. C. (2020a). Levels of biological plausibility. Philosophical Transactions of the Royal Society B. https://doi.org/10.1098/rstb.2019.0632
-
Love, B. C. (2020b). Model-based fMRI analysis of memory. Current Opinion in Behavioral Sciences, 32, 88–93. https://doi.org/10.1016/j.cobeha.2020.02.012
-
Turner, B. M., Forstmann, B. U., Love, B. C., Palmeri, T. J., & Van Maanen, L. (2017). Approaches to analysis in model-based cognitive neuroscience. Journal of Mathematical Psychology, 76, 65–79.
-
Turner, B. M., Forstmann, B. U., & Steyvers, M. (2019). Joint models of neural and behavioral data. Springer International Publishing. https://doi.org/10.1007/978-3-030-03688-1
Rights and permissions
Copyright information
© 2024 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Love, B.C. (2024). Linking Models with Brain Measures. In: Forstmann, B.U., Turner, B.M. (eds) An Introduction to Model-Based Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-45271-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-45271-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45270-3
Online ISBN: 978-3-031-45271-0
eBook Packages: Behavioral Science and PsychologyBehavioral Science and Psychology (R0)