Skip to main content

Assessing Neurocognitive Hypotheses in a Likelihood-Based Model of the Free-Recall Task

  • Chapter
  • First Online:
An Introduction to Model-Based Cognitive Neuroscience
  • 216 Accesses

Abstract

In the free-recall task, a participant studies a list of words, and then reports those words in whatever order they come to mind. As such, the behavioral dynamics of free recall are revealed by the recall sequences produced by participants. A variety of cognitive models have been designed to account for these behavioral dynamics. These models describe the cognitive operations that give rise to the observed recall sequences. This chapter provides a tutorial overview of a likelihood-based free-recall model designed to connect these cognitive operations with neural signals recorded as participants search their memories during a free-recall task.

This work was supported by a grant from the National Science Foundation to SMP (#1756417).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This model comparison may not have been strictly necessary: The neurally naive model is nested within the neurally informed model (in that the neurally informed model becomes identical to the naive model when \(\nu =0\)). As such, a statistical technique demonstrating that the best-fit value of \(\nu \) is reliably above zero would allow us to draw similar conclusions.

References

  • Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S. (1977). Distinctive features, categorical perception, and probability learning: Some applications of a neural model. Psychological Review, 84, 413–451.

    Article  Google Scholar 

  • Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114(3), 539–576.

    Article  PubMed  Google Scholar 

  • Bullmore, E., Long, C., Suckling, J., Fadili, J., Calvert, G., Zelaya, F., Carpenter, T.A., Brammer, M. (2001). Colored noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling methods in time and wavelet domains. Human Brain Mapping, 12(2), 61–78.

    Article  PubMed  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261–304. Retrieved 2013-07-25, from http://smr.sagepub.com/content/33/2/261. https://doi.org/10.1177/0049124104268644

  • Davelaar, E. J., Goshen-Gottstein, Y., Ashkenazi, A., Haarmann, H. J., & Usher, M. (2005). The demise of short-term memory revisited: Empirical and computational investigations of recency effects. Psychological Review, 112, 3–42.

    Article  PubMed  Google Scholar 

  • Dougherty, M. & Harbison, J. (2007). Motivated to retrieve: How often are you willing to go back to the well when the well is dry? Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(6), 1108.

    PubMed  Google Scholar 

  • Farrell, S. (2012). Temporal clustering and sequencing in working memory and episodic memory. Psychological Review, 119(2), 223–271.

    Article  PubMed  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. Springer.

    Book  Google Scholar 

  • Healey, M. K. & Kahana, M. J. (2014). Is memory search governed by universal principles or idiosyncratic strategies? Journal of Experimental Psychology—General, 143(2), 575–596.

    Article  PubMed  Google Scholar 

  • Howard, M. W., Fotedar, M. S., Datey, A. V., & Hasselmo, M. E. (2005). The temporal context model in spatial navigation and relational learning: Toward a common explanation of medial temporal lobe function across domains. Psychological Review, 112(1), 75–116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of Mathematical Psychology, 46, 269–299.

    Article  Google Scholar 

  • Kahana, M. J. (2012). Foundations of human memory (1st ed.). Oxford University Press.

    Google Scholar 

  • Kragel, J. E., Morton, N. W., & Polyn, S. M. (2015). Neural activity in the medial temporal lobe reveals the fidelity of mental time travel. The Journal of Neuroscience, 35(7), 2914–2926.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehman, M., & Malmberg, K. J. (2013). A buffer model of memory encoding and temporal correlations in retrieval. Psychological Review, 120(1), 155–189.

    Article  PubMed  Google Scholar 

  • Lohnas, L. J., Polyn, S. M., & Kahana, M. J. (2015). Expanding the scope of memory search: Modeling intralist and interlist effects in free recall. Psychological Review, 122(2), 337–363.

    Article  PubMed  Google Scholar 

  • Luce, R. D. (1986). Response times. Oxford University Press.

    Google Scholar 

  • Mallows, C. L. (1973). Sequential sampling of finite populations with and without replacement. SIAM Journal on Applied Mathematics, 24(2), 164–168.

    Article  Google Scholar 

  • McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419–57.

    Article  PubMed  Google Scholar 

  • Miller, J. F., Weidemann, C. T., & Kahana, M. J. (2012). Recall termination in free recall. Memory & Cognition, 40(4), 540–550.

    Article  Google Scholar 

  • Milner, B., Squire, L. R., & Kandel, E. R. (1998). Cognitive neuroscience and the study of memory. Neuron, 20(3), 445–468.

    Article  PubMed  Google Scholar 

  • Morton, N. W., & Polyn, S. M. (2016). A predictive framework for evaluating models of semantic organization in free recall. Journal of Memory and Language, 86, 119–140.

    Article  PubMed  Google Scholar 

  • Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: A complementary learning systems approach. Psychological Review, 110, 611–646.

    Article  PubMed  Google Scholar 

  • Osth, A. F., & Farrell, S. (2019). Using response time distributions and race models to characterize primacy and recency effects in free recall initiation. Psychological Review, 126(4), 578.

    Article  PubMed  Google Scholar 

  • Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context maintenance and retrieval model of organizational processes in free recall. Psychological Review, 116(1), 129–156.

    Article  PubMed  PubMed Central  Google Scholar 

  • Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2010). Neurally constrained modeling of perceptual decision making. Psychological Review, 117(4), 1113–1143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of associative memory. Psychological Review, 88, 93–134.

    Article  Google Scholar 

  • Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M., & Norman, K. A. (2017). Complementary learning systems within the hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160049.

    Article  Google Scholar 

  • Sederberg, P. B., Howard, M. W., & Kahana, M. J. (2008). A context-based theory of recency and contiguity in free recall. Psychological Review, 115(4), 893–912.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tulving, E. (1993). What is episodic memory? Current Directions in Psychological Science, 2(3), 67–70.

    Article  Google Scholar 

  • Turner, B. M., Forstmann, B. U., Love, B. C., Palmeri, T. J., & Van Maanen, L. (2017). Approaches to analysis in model-based cognitive neuroscience. Journal of Mathematical Psychology, 76, 65–79.

    Article  PubMed  Google Scholar 

  • Wagenmakers, E.-J. & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11(1), 192–196. Retrieved 2014-02-05, from http://link.springer.com/article/10.3758/BF03206482. https://doi.org/10.3758/BF03206482

  • Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. The Annals of Mathematical Statistics, 9(1), 60–62. Retrieved 2014-12-04, from http://www.jstor.org/stable/2957648

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean M. Polyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polyn, S.M. (2024). Assessing Neurocognitive Hypotheses in a Likelihood-Based Model of the Free-Recall Task. In: Forstmann, B.U., Turner, B.M. (eds) An Introduction to Model-Based Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-45271-0_12

Download citation

Publish with us

Policies and ethics