Skip to main content

Getting Rid of Motion Sickness

  • Chapter
  • First Online:
Autonomous Vehicles and Virtual Reality
  • 257 Accesses

Abstract

When confronted with conflicting perceptual inputs on self-motion, users may experience motion and cybersickness symptoms, causing visual or other forms of physiological discomfort, such as troubled vision, headaches, or dizziness, or even more severe sickness effects such as nausea, vertigo, or vomiting. Several theories have been proposed to explain their occurrence, especially for motion sickness when displacing at sea, on a train, or in ground vehicles. With the advent of virtual environments and VR or AR systems, additional sickness effects have been observed due to the extended possibilities of virtual motion and visual conflicts or effects inducing impaired visual perception and recurring sickness effects (i.e., cybersickness), also called Virtual reality induced sickness effects (VRISE). Naturally, there are many methods for measuring and predicting motion and cybersickness, various new display system technologies for reducing visual inconsistency effects, and new navigational techniques for avoiding motion sickness. Today, the importance of these motion- and cybersickness-avoidance techniques is being reinforced with the progressive introduction of autonomous and connected vehicles, which might induce more frequent car sickness effects when the vehicle is in self-driving mode. Indeed, automobile motion sickness has been experienced by a large proportion of vehicle passengers, and as more autonomous vehicles are used in self-driving mode, more drivers will become passengers for extended durations. According to the identified sickness effects, various cybersickness avoidance techniques have been proposed. To avoid inconsistencies between visual eye accommodation and binocular cues, new visual display systems are proposed, often with several display screens, corresponding to different virtual object distances. To deal with visuo-vestibular conflicts during virtual navigation, only rendered by the visualization of the perceived virtual world, various software solutions have been proposed. While many are well-known, they reduce natural navigation or the viewed scene; other more recent ones have not yet been industrially deployed. Finally, car sickness is progressively recognized as a major issue for the autonomous vehicle market by many OEMs, suppliers, and academic organizations, which are now increasingly developing new vehicle comfort and/or car sickness-avoidance methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.theverge.com/23451629/meta-quest-pro-vr-headset-horizon-review.

  2. 2.

    Fincham and Walton [1].

  3. 3.

    Levoy and Hanrahan [2].

  4. 4.

    Balogh [3] and Balogh [4].

  5. 5.

    https://www.nhk.or.jp/strl/english/ibc2022/hmd.html, https://www.roadtovr.com/creal-light-field-display-new-immersion-ar/.

  6. 6.

    https://www.businesswire.com/news/home/20230523005141/en/Mojo-Vision-Develops-First-300mm-GaN-on-Silicon-Blue-LED-Wafer-for-Micro-LED-Display/.

  7. 7.

    Perroud [5].

  8. 8.

    Reason [6].

  9. 9.

    LaViola [7].

  10. 10.

    Bowman [8].

  11. 11.

    Farmani [9].

  12. 12.

    Bhandari et al. [10].

  13. 13.

    Kemeny [11].

  14. 14.

    Prothero and Parker [12].

  15. 15.

    Whittinghill et al. [13]. A spinoff of Purdue was also starting to commercialize the proposed solution in 2016, see: Purdue startup commercializing virtual reality sickness solutions, helps move virtual reality mainstream—Purdue University News.

  16. 16.

    Wienrich et al. [14]. See also Wienrich et al. [15].

  17. 17.

    Duh et al. [16].

  18. 18.

    Patent FR3120719, https://data.inpi.fr/brevets/WO2022195177.

  19. 19.

    https://driving-simulation.org/cybersickness/.

  20. 20.

    Fernandes and Feiner [17] and Bos et al. [18].

  21. 21.

    Kemeny [19] and Aykent et al. [20].

  22. 22.

    Budhiraja et al. [21].

  23. 23.

    Patent EP4189527-A1, Damveld Hermannus and Mulliken Grant [22].

  24. 24.

    Kemeny et al. [23] and Yao et al. [24].

  25. 25.

    Goldberg et al. [25] and Bos [26].

  26. 26.

    Bos et al. [28].

  27. 27.

    ISO 9241–394 Ergonomics of Human–System Interaction—Part 394 [29].

  28. 28.

    Colombet et al. [30].

  29. 29.

    Risi and Palmisano [31].

  30. 30.

    Reason [32].

  31. 31.

    Kennedy et al. [33].

  32. 32.

    Bos et al. [34].

  33. 33.

    Kim et al. [36].

  34. 34.

    Petit et al. [37], Wilson [38] and Holmes and Griffin [39].

  35. 35.

    Aykent et al. [40] and Miljković [41].

  36. 36.

    Stoffregen [42].

  37. 37.

    Chardonnet et al. [43].

  38. 38.

    Reed-Jones et al. [44].

  39. 39.

    Kim et al. [45].

  40. 40.

    Keshavarz [46].

  41. 41.

    Kuiper et al. [47].

  42. 42.

    https://www.wsj.com/articles/volvo-aims-to-ease-the-queasiness-of-riding-in-self-driving-vehicles-11612970951.

  43. 43.

    https://www.jaguarlandrover.com/news/2018/11/future-jaguar-and-land-rover-vehicles-will-help-reduce-motion-sickness.

  44. 44.

    https://www.wired.com/story/jaguar-land-rover-car-sickness-study/.

  45. 45.

    Smyth et al. [48].

  46. 46.

    Salter et al. [49].

  47. 47.

    Patent EP-3333011B1, Ketels [50].

  48. 48.

    Patent US-20220020119-A1, Grace et al. [51].

  49. 49.

    https://www.forbes.com/sites/annatobin/2019/05/30/self-driving-cars-likely-to-cause-A-spike-in-motion-sickness-and-volkswagen-is-working-on-A-cure/.

  50. 50.

    https://dsc2022.org/premium-motion-comfort-for-passengers-in-autonomous-vehicles/.

  51. 51.

    Bos et al. [52].

  52. 52.

    Baumann et al. [53].

  53. 53.

    PATENT US-10,643,391-B2, Rober et al. [54] and patent US-11,321,923-B2, Rober et al. [55].

  54. 54.

    https://www.audi.com/en/innovation/development/holoride-virtual-reality-meets-the-real-world.html.

  55. 55.

    Patent US-20190079314-A1, West Jerry [56].

  56. 56.

    Patent FR3050837, Jeannin, Hubert, “Dispositif D’information Inertielle, Sagittale (Avant-Arriere) Par Niveau(X) Mobile(S) Accessibles A La Voie Visuelle Peripherique Laterale” (2017) and Patent US-D913361-S, Jeannin, Hubert, “Spectacles” (2021); commercialized as Seetroën under license by Citroën, see: https://boardingglasses.com/en/pages/faq.

References

  1. Fincham, E. F., & Walton, J. (1957). The reciprocal actions of accommodation and convergence. The Journal of Physiology, 137(3), 488–508.

    Article  Google Scholar 

  2. Levoy, M., & Hanrahan, P. (1996). Light field rendering. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques (pp. 31–42).

    Google Scholar 

  3. Balogh, T. (2006). The holovizio system. In Stereoscopic displays and virtual reality systems XIII (Vol. 6055, pp. 279–290). SPIE.

    Google Scholar 

  4. Balogh, T., Kovács, P. T., Dobrányi, Z., Barsi, A., Megyesi, Z., Gaál, Z., & Balogh, G. (2008). The holovizio system—New opportunity offered by 3D displays. In Proceedings of the TMCE (pp. 79–89).

    Google Scholar 

  5. Perroud, B., Régnier, S., Kemeny, A., & Mérienne, F. (2019). Model of realism score for immersive VR systems. Transportation research part F: Traffic psychology and behaviour, 61, 238–251.

    Article  Google Scholar 

  6. Reason, J. T., & Brand, J. J. (1975). Motion sickness. Academic Press.

    Google Scholar 

  7. LaViola Jr, J. J. (2000). A discussion of cybersickness in virtual environments. ACM Sigchi Bulletin, 32(1), 47–56.

    Google Scholar 

  8. Bowman, D. A., Koller, D., & Hodges, L. F. (1997). Travel in immersive virtual environments: An evaluation of viewpoint motion control techniques. In Proceedings of IEEE 1997 annual international symposium on virtual reality (pp. 45–52). IEEE.

    Google Scholar 

  9. Farmani, Y., & Teather, R. J. (2020). Evaluating discrete viewpoint control to reduce cybersickness in virtual reality. Virtual Reality, 24, 645–664.

    Article  Google Scholar 

  10. Bhandari, J., MacNeilage, P. R., & Folmer, E. (2018). Teleportation without spatial disorientation using optical flow cues. Graphics Interface, 162–167.

    Google Scholar 

  11. Kemeny, A., George, P., Mérienne, F., & Colombet, F. (2017). New VR navigation techniques to reduce cybersickness. Electronic Imaging, 48–53.

    Google Scholar 

  12. Prothero, J. D., & Parker, D. E. (2003). A unified approach to presence and motion sickness. In Virtual and adaptive environments (pp. 47–66). CRC Press.

    Google Scholar 

  13. Whittinghill, D. M., Ziegler, B., Case, T., & Moore, B. (2015). Nasum virtualis: A simple technique for reducing simulator sickness. In Games developers conference (GDC) (Vol. 74).

    Google Scholar 

  14. Wienrich, C., Weidner, C. K., Schatto, C., Obremski, D., & Israel, J. H. (2018). A virtual nose as a rest-frame-the impact on simulator sickness and game experience. In 2018 10th international conference on virtual worlds and games for serious applications (VS-Games). IEEE.

    Google Scholar 

  15. Wienrich, C., Obremski, D., & Israel, J. H. (2022). Repeated experience or a virtual nose to reduce simulator sickness?—Investigating prediction of the sensorial conflict theory and the rest-frame hypothesis in two virtual games. Entertainment Computing, 43, 100514.

    Google Scholar 

  16. Duh, H. B. L., Parker, D. E., & Furness, T. A. An independent visual background reduced simulator sickness in a driving simulator. Presence: Teleoperators & Virtual Environments, 13(5), 578–588.

    Google Scholar 

  17. Fernandes, A. S., Feiner, S. K. (2016). Combating VR sickness through subtle dynamic field-of-view modification. In 2016 IEEE Symposium on 3D User Interfaces (3DUI) (pp. 201–210).

    Google Scholar 

  18. Bos, J. E., de Vries, S. C., van Emmerik, M. L., & Groen, E. L.  (2010). The effect of internal and external fields of view on visually induced motion sickness. Applied Ergonomics, 41, 516–521.

    Article  Google Scholar 

  19. Kemeny A. (2014). From driving simulation to virtual reality. In Proceedings of the 2014 virtual reality international conference (pp. 1–5). Association for Computing Machinery.

    Google Scholar 

  20. Aykent, B., Yang, Z., Merienne, F., & Kemeny, A. (2014). Simulation sickness comparison between a limited field of view virtual reality head mounted display (Oculus) and a medium range field of view static ecological driving simulator (Eco2).

    Google Scholar 

  21. Budhiraja, P., Miller, M. R., Modi, A. K., & Forsyth, D. (2017). Rotation blurring: use of artificial blurring to reduce cybersickness in virtual reality first person shooters. arXiv preprint arXiv:1710.02599.

  22. Damveld Hermannus, J., & Mulliken Grant, H. (2023). Adjusting image content to improve user experience.

    Google Scholar 

  23. Kemeny, A., Colombet, F., & Denoual, T. (2015). How to avoid simulation sickness in virtual environments during user displacement. In: The engineering reality of virtual reality (Vol. 9392). SPIE.

    Google Scholar 

  24. Yao, R., Heath, T., Davies, A., Forsyth, T., Mitchell, N., & Hoberman, P. (2014). Oculus VR best practices guide (pp. 27–35). Oculus VR 4.

    Google Scholar 

  25. Goldberg, J. M., Smith, C. E., & Fernández, C. (1984). Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. Journal of Neurophysiology, 51(6), 1236–1256.

    Google Scholar 

  26. Bos, J. E. (2015). Less sickness with more motion and/or mental distraction. Journal of Vestibular Research, 25(1), 23–33.

    Article  Google Scholar 

  27. Kemeny, A., Chardonnet, J. R., Colombet, F. (2020). Getting rid of cybersickness. In Virtual Reality, Augmented Reality and Simulators (p.45). Springer.

    Google Scholar 

  28. Bos, J. E., Diels, C., Souman, J. L. (2022). What we don’t (yet) know about self-driving carsickness. In Proceedings of the driving simulation conference 2022 Europe VR (pp. 37–42). Driving Simulation Association.

    Google Scholar 

  29. ISO 9241-394 Ergonomics of Human–System Interaction—Part 394. (2020). Ergonomic requirements for reducing undesirable biomedical effects of induced motion sickness during watching electronic images (pp. 1–24).

    Google Scholar 

  30. Colombet, F., Kemeny, A., & George, P. (2016). Motion sickness comparison between a CAVE and a HMD. In Driving simulation proceedings (pp. 201–206).

    Google Scholar 

  31. Risi, D., & Palmisano, S. (2019). Effects of postural stability, active control, exposure duration and repeated exposures on HMD induced cybersickness. Displays, 60, 9–17.

    Article  Google Scholar 

  32. Reason, J. T. (1968). Relations between motion sickness susceptibility, the spiral after-effect and loudness estimation. British Journal of Psychology, 59(4), 385–393.

    Article  Google Scholar 

  33. Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. International Journal of Aviation Psychology, 3(3), 203–220.

    Google Scholar 

  34. Bos, J. E., MacKinnon, S. N., & Patterson, A. (2005). Motion sickness symptoms in a ship motion simulator: Effects of inside, outside, and no view. Aviation, Space, and Environmental Medicine, 76(12), 1111–1118

    Google Scholar 

  35. Van Leeuwen, T. D., Cleij, D., Pool, D. M., Mulder, M., & Bülthoff, H. (2017). Time-varying perceived motion mismatch due to motion scaling in curve driving simulation. In Driving Simulation Proceedings (pp. 121–123).

    Google Scholar 

  36. Kim, Y. Y., Kim, H. J., Kim, E. N., Ko, H. D., & Kim, H. T. (2005). Characteristic changes in the physiological components of cybersickness. Psychophysiology, 42(5), 616–625.

    Google Scholar 

  37. Petit, C., Capperon, C., Roch, H., Priez. A. (2002). Driver electrodermal responses on a dynamic driving simulator. In Driving simulation conference (pp. 313–317).

    Google Scholar 

  38. Wilson, G. F. (2002). An analysis of mental workload in pilots during flight using multiple psychophysiological measures. The International Journal of Aviation Psychology, 12(1), 3–18.

    Article  Google Scholar 

  39. Holmes, S. R., & Griffin, M. J. (2001). Correlation between heart rate and the severity of motion sickness caused by optokinetic stimulation. Journal of Psychophysiology, 15(1), 35.

    Article  Google Scholar 

  40. Aykent, B., Paillot, D., Mérienne, F., & Kemeny, A. (2012). “The Influence of the feedback control of the hexapod platform of the SAAM dynamic driving simulator on neuromuscular dynamics of the drivers.” Driving Simulation Conference, (2012): 377–380

    Google Scholar 

  41. Miljković, N. (2023). Towards objective assessment of driving simulation sickness: Pros and cons of stomach electrical activity. In Driving simulation proceedings.

    Google Scholar 

  42. Stoffregen, T. A., & James Smart Jr., L. (1998). Postural instability precedes motion sickness. Brain Research Bulletin, 47(5), 437–448.

    Google Scholar 

  43. Chardonnet, J. R., Mirzaei, M. A., & Mérienne, F. (2017). Features of the postural sway signal as indicators to estimate and predict visually induced motion sickness in virtual reality. International Journal of Human-Computer Interaction, 33(10), 771–785.

    Article  Google Scholar 

  44. Reed-Jones, R. J., Vallis, L. A., Reed-Jones, J. G., & Trick, L. M. (2008). The relationship between postural stability and virtual environment adaptation. Neuroscience Letters, 435(3), 204–209.

    Google Scholar 

  45. Kim, Y. Y., Kim, E. N., Park, M. J., Park, K. S., Ko, H. D., & Kim, H. T. (2008). The application of biosignal feedback for reducing cybersickness from exposure to a virtual environment. Presence: Teleoperators and Virtual Environments, 17(1), 1–16.

    Google Scholar 

  46. Keshavarz, B., Hettinger, L. J., Kennedy, R. S., & Campos, J. L. (2014). Demonstrating the potential for dynamic auditory stimulation to contribute to motion sickness. PloS One, 9(7), e101016.

    Google Scholar 

  47. Kuiper, O. X., Bos, J. E., Schmidt, E. A., Diels, C., & Wolter, S. (2020). Knowing what’s coming: Anticipatory audio cues can mitigate motion sickness. Applied Ergonomics, 85, 103068.

    Google Scholar 

  48. Smyth, J., Jennings, P., Bennett, P., & Birrell, S. (2021). A novel method for reducing motion sickness susceptibility through training visuospatial ability—A two-part study. Applied Ergonomics, 90, 103264.

    Google Scholar 

  49. Salter, S., Diels, C., Herriotts, P., Kanarachos, S., & Thake, D. (2019). Motion sickness in automated vehicles with forward and rearward facing seating orientations. Applied Ergonomics, 78, 54–61.

    Google Scholar 

  50. Ketels, C., Goodrich, R., BENSON, M. K., Bransdorfer, A. H. (2017). Motion sickness mitigation (pp. 1–34).

    Google Scholar 

  51. Grace, N., Plascencia-Vega, D., Gidon, D. (2022). Adaptive adjustments to visual media to reduce motion sickness (pp. 1–16).

    Google Scholar 

  52. Bos, J. E., Nooij, S. A. E., Souman, J. L. (2021). (Im)possibilities of studying carsickness in a driving simulator. In Proceedings of the driving simulation conference (pp. 59–63).

    Google Scholar 

  53. Baumann, G., Jurisch, M., Holzaphel, C., Buck, C., Reuss, H. C. (2021). Driving simulator studies for kinetosis-reducing control of active chassis systems in autonomous vehicles. In Proceedings of the driving simulation conference (pp. 51–58).

    Google Scholar 

  54. Rober, M. B., Cohen, S. I., Kurz., D., Holl, T., Lyon, B. B., Meier, P. G., Riepling, J. M., Gerhard, H. (2020). Immersive virtual display (pp. 1–37).

    Google Scholar 

  55. Rober, M. B., Cohen, S. I., Kurz., D., Holl, T., Lyon, B. B., Meier, P. G., Riepling, J. M., Gerhard, H. (2023). Immersive display of motion-synchronized virtual content (pp. 1–37).

    Google Scholar 

  56. West Jerry, W. (2018). Motion sickness prevention eyewear (pp. 1–6).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Kemeny .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kemeny, A. (2024). Getting Rid of Motion Sickness. In: Autonomous Vehicles and Virtual Reality. Springer, Cham. https://doi.org/10.1007/978-3-031-45263-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45263-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45262-8

  • Online ISBN: 978-3-031-45263-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics