Skip to main content

Virtual and Augmented Reality

  • Chapter
  • First Online:
Autonomous Vehicles and Virtual Reality
  • 278 Accesses

Abstract

This chapter describes some of the VR and AR systems that have been used in the automobile industry for a couple of decades, not only for vehicle engineering design and testing but also connected and autonomous vehicle (CAV) verification and validation. It demonstrates the convergence between VR and AR technology for engineering design and onboard vehicle visualization systems. Initially, VR technology was mostly driven by virtual engineering design needs in the automotive and aircraft industries as well as by the gaming industry. Recently, the strong development of VR helmets and more recently AR glasses, initiated by Facebook’s Oculus industrial development, and also the advent of wide field of view (FOV) head up  display (HUD)s and AR display systems, which provide information to the driver and passengers, have brought significant enhancements in visual quality. The recent development of wearable glasses, on the market since the 2010s, with customer versions of Google Glasses distributed in 2013 and in the following years by Sony and Toshiba, has led to the increasing maturity of AR glasses. More recent AR glasses, providing binocular Micro-LED optical waveguide display, have showcased a technology that may allow users in the near future to experience immersive visual AR technology of quality, similar to what AR helmets already provide. A major advantage of AR glasses, similar to AR helmets, is that users keep the surrounding stable visual references during observation; thus, cybersickness is significantly decreased due to visuo-vestibular incoherencies (see also Chap. 5, Sect. 5.2 Motion and cybersickness). In addition, AR glasses weigh less and are less intrusive, and observers wear them today almost like daily corrective glasses or sunglasses, thus retaining their natural and ecological use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sutherland [1].

  2. 2.

    Kemeny [2].

  3. 3.

    Coates et al. [4].

  4. 4.

    Cruz-Neira et al. [5].

  5. 5.

    Leigh et al. [6].

  6. 6.

    Schmieder et al. [7].

  7. 7.

    Dodgson [8].

  8. 8.

    Kemeny et al. [9].

  9. 9.

    http://dsc2018.org/Docs/IndustrialPitches/12.%20Digital%20Projection%20DSC2018%20Industrial%20Pitch.pdf.

  10. 10.

    Amin et al. [10].

  11. 11.

    Berg and Vance [11], Colombet et al. [12].

  12. 12.

    Weech et al. [13].

  13. 13.

    https://www.renaultgroup.com/en/news-on-air/news/renault-has-acquired-the-worlds-most-realistic-simulator/

  14. 14.

    A largely used CAD-CAM (computer aided design and manufacturing) surface is called NURBS (Non uniform rational b-spline), see: Piegl and Wayne [14].

  15. 15.

    https://www.windowscentral.com/everything-we-know-so-far-about-windows-mixed-reality.

  16. 16.

    https://www.theverge.com/2022/9/2/23334656/meta-qualcomm-quest-vr-ar-snapdragon-xr-custom-chips.

  17. 17.

    Mon‐Williams et al. [15].

  18. 18.

    Perroud et al. [17].

  19. 19.

    Kennedy et al. [18].

  20. 20.

    Wiederhold [19].

  21. 21.

    Kemeny [3].

  22. 22.

    Varjo Raises $40 M Series D to Build an Industrial Metaverse—Varjo.com.

  23. 23.

    No. FR2875989, Kemeny et al. [20].

  24. 24.

    Réalité mixte (Futur en Seine 2016 Off, Paris) | Openverse, by dalbera.

  25. 25.

    https://www.roadtovr.com/volkswagen-group-to-train-10000-employees-in-vr-in-2018/.

  26. 26.

    https://www.alliedmarketresearch.com/automotive-ar-and-vr-market., see also: Automotive AR/VR market size worldwide 2025 | Statista.

  27. 27.

    Eriksson et al. [21].

  28. 28.

    Automotive Augmented Reality Market Share By 2031—MarketWatch.

  29. 29.

    Porsche invests in Swiss start-up WayRay—Porsche Newsroom.

  30. 30.

    https://youtu.be/tVK3W8HPrGA.

  31. 31.

    Toshiba Glass hands-on review—Tech Advisor.

  32. 32.

    Toshiba takes on HoloLens with new AR smart glasses | TechRadar, TechViz x Lenovo ThinkReality A3 Smart Glasses—TechViz.

  33. 33.

    Nreal Light review: Hardware is only half the battle—The Verge.

  34. 34.

    TCL Unveils Groundbreaking Augmented Reality Glasses at CES 2023.

  35. 35.

    New XR smartglasses may just be the breakthrough AR/VR needs (embedded.com).

  36. 36.

    DigiLens Makes Waves In The AR Market With Its ARGO Headset (forbes.com).

  37. 37.

    Cutting-Edge technology Powers Continental’s Augmented Reality Head-up Display—Continental AG.

  38. 38.

    Reason and Brand [22].

  39. 39.

    Howarth et al. [23].

  40. 40.

    Stanney et al. [24].

  41. 41.

    Slater et al. [25].

  42. 42.

    Barthou et al. [27].

  43. 43.

    Van Gisbergen et al. [27].

  44. 44.

    Perroud et al. [17].

  45. 45.

    Riccio and Stoffregen [28].

  46. 46.

    Smart et al. [29].

  47. 47.

    Treisman [30].

  48. 48.

    Slater and Wilbur [31].

  49. 49.

    Kemeny et al. [32].

  50. 50.

    Weech et al. [13].

  51. 51.

    Wilson et al. [33].

  52. 52.

    Bos [34].

  53. 53.

    Kemeny et al. [32].

  54. 54.

    LaViola [35].

  55. 55.

    Da Silva et al. [36].

  56. 56.

    Paillard et al. [37].

  57. 57.

    Bergström [38].

  58. 58.

    Tian et al. [39].

  59. 59.

    Yang et al. [40].

  60. 60.

    Kemeny et al. [41].

  61. 61.

    Parduzi et al. [42].

References

  1. Sutherland, I. E. (1968). A head-mounted three-dimensional display. In Proceedings of the December 9–11, 1968, fall joint computer conference, part I.

    Google Scholar 

  2. Kemeny, A. (2014). From driving simulation to virtual reality. In Proceedings of the 2014 virtual reality international conference.

    Google Scholar 

  3. Kemeny, A. (2017). Industrial use of VR headsets. In P. Fuchs (Ed.), Virtual reality headsets—A theoretical and pragmatic approach (pp. 163–173). CRC Press.

    Google Scholar 

  4. Coates, N., Ehrette, M., Hayes, T., Blackham, G., Heidet, A., & Kemeny, A. (2002). Head-mounted display in driving simulation applications in CARDS (pp. 33–43). DSC.

    Google Scholar 

  5. Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., & Hart, J. C. (1992). The CAVE: Audio visual experience automatic virtual environment. Communications of the ACM, 35, 64–73.

    Article  Google Scholar 

  6. Leigh, J., Johnson, A. E., DeFanti, T. A., Brown, M., Ali, M. D., Bailey, S., Banerjee, A., Banerjee, P., Curry, K., Curtis, J., Dech, F., Dodds, B., Foster, Fraser, I.S., Ganeshan, K.,Glen, D., Grossman, R., Heil, Y., Hicks, J., Hudson, A. D., Imai, T., Khan, M. A., Kapoor, A., Kenyon, R. V., Park, K., Parod, B., Rajlich, P. J., Rasmussen, M., Rawlings, M., Robertson, Thongrong, S., Stein, R. J., Tuecke, S., Wallach, H., Wong, H. Y., Wheless, G. H. (1999). A review of tele-immersive applications in the CAVE research network. In Proceedings IEEE virtual reality (Cat. No. 99CB36316) (pp. 180–187).

    Google Scholar 

  7. Schmieder, H., Nagel, K., Schöner, H. P. (2017). Enhancing a driving simulator with a 3d-stereo projection system. In Proceedings of the driving simulation conference (pp. 103–110).

    Google Scholar 

  8. Dodgson, N. A. (2004). Variation and extrema of human interpupillary distance. In Stereoscopic displays and virtual reality systems, XI (Vol. 5291). SPIE.

    Google Scholar 

  9. Kemeny, A., Colombet, F., Denoual T. (2015). How to avoid simulation sickness in virtual environments during user displacement. In The engineering reality of virtual reality (Vol. 9392). SPIE.

    Google Scholar 

  10. Amin, H. U., Malik, A. S., Mumtaz, W., Badruddin, N., & Kamel, N. 2015). Evaluation of passive polarized stereoscopic 3D display for visual & mental fatigues. In 37th annual international conference of the ieee engineering in medicine and biology society (EMBC). IEEE.

    Google Scholar 

  11. Berg, L. P., & Vance, J. M. (2017). Industry use of virtual reality in product design and manufacturing: A survey. Virtual Reality, 21, 1–17.

    Article  Google Scholar 

  12. Colombet, F., Perroud, B., Regnier, S., Kemeny, A. (2021). Contribution of stereoscopy and motion parallax for speed perception in driving simulation. In Driving Simulation Proceedings, 6 (pp. 91–97).

    Google Scholar 

  13. Weech, S., Kenny, S., & Barnett-Cowan, M. (2019). Presence and cybersickness in virtual reality are negatively related: A review. Frontiers in Psychology, 10, 158.

    Article  Google Scholar 

  14. Piegl, L. A., & Tiller, W. (1998). Geometry-based triangulation of trimmed NURBS surfaces. Computer-Aided Design, 30(1), 11–18.

    Article  Google Scholar 

  15. Mon-Williams, M. (1993). Binocular vision in a virtual world: Visual deficits following the wearing of a head-mounted display. Ophthalmic and Physiological Optics, 13(4), 387–391.

    Article  Google Scholar 

  16. Fisher, S. K., & Ciuffreda, K. J. (1988). Accommodation and apparent distance. Perception, 17(5), 609–621.

    Google Scholar 

  17. Perroud, B., Régnier, S., Kemeny, A., & Mérienne, F. (2019). Model of realism score for immersive VR systems. Transportation Research Part F: Traffic Psychology and Behaviour, 61, 238–251.

    Article  Google Scholar 

  18. Kennedy, R. S., Stanney, K. M., & Dunlap, W. P. (2000). Duration and exposure to virtual environments: sickness curves during and across sessions. In Presence: Teleoperators & Virtual Environments, 9(5), 463–472.

    Google Scholar 

  19. Wiederhold, B. K. (2013). Time to port augmented reality health apps to smart glasses? Cyberpsychology, Behavior, and Social Networking, 16(3), 157–158.

    Article  Google Scholar 

  20. Kemeny, A., Panerai, F. (2006). Dispositif vidéo d’augmentation de réalité augmentée et procédé de comparaison de deux environnements.

    Google Scholar 

  21. Eriksson, A., & Stanton, N. A. (2017). Takeover time in highly automated vehicles: Noncritical transitions to and from manual control. Human Factors, 59(4), 689–705.

    Article  Google Scholar 

  22. Reason, J. T., & Brand, J. J. (1975). Motion sickness. Academic Press.

    Google Scholar 

  23. Howarth, P. A. (1999). Oculomotor changes within virtual environments. Applied Ergonomics, 30(1), 59–67.

    Article  Google Scholar 

  24. Stanney, K., Fidopiastis, C., & Foster, L. (2020). Virtual reality is sexist: But it does not have to be. Frontiers in Robotics and AI, 7, 4.

    Article  Google Scholar 

  25. Slater, M., Khanna, P., Mortensen, J., & Yu, I. (2009). Visual realism enhances realistic response in an immersive virtual environment. IEEE Computer Graphics and Applications 29(3), 76–84.

    Google Scholar 

  26. Barthou, A., Kemeny, A., Reymond, G., Mérienne, F., & Berthoz, A. (2010). Driver trust and reliance on a navigation system: Effect of graphical display. In Proceedings of the driving simulation conferences (pp. 199–208).

    Google Scholar 

  27. van Gisbergen, M., Kovacs, M., Campos, F., van der Heeft, M., & Vugts, V. (2019). What we don’t know: The effect of realism in virtual reality on experience and behaviour. In Augmented reality and virtual reality: The power of AR and VR for business (pp. 45–57).

    Google Scholar 

  28. Riccio, G. E., & Stoffregen, T. A. (1991). An ecological theory of motion sickness and postural instability. Ecological Psychology, 3(3), 195–240.

    Article  Google Scholar 

  29. Smart Jr, L. J., Stoffregen, T. A., & Bardy, B. G. (2002). Visually induced motion sickness predicted by postural instability. Human Factors, 44(3), 451–465.

    Article  Google Scholar 

  30. Treisman, M. (1977) Motion sickness: An evolutionary hypothesis. Science, 197(4302), 493–495.

    Article  Google Scholar 

  31. Slater, M., & Wilbur, S. (1997). A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators & Virtual Environments, 6(6), 603–616.

    Google Scholar 

  32. Kemeny, A., Chardonnet, J. R., Colombet, F. (2020). Getting rid of cybersickness. In Virtual Reality, Augmented Reality and Simulators (p. 45). Springer.

    Google Scholar 

  33. Wilson, J. (1997). Presence and side effects: Complementary or contradictory? Advances in Human Factors/Ergonomics, 21, 889–892.

    Google Scholar 

  34. Bos, J. E. (2015). Less sickness with more motion and/or mental distraction. Journal of Vestibular Research, 25, 23–33.

    Article  Google Scholar 

  35. LaViola, J. J., Jr. (2000). A discussion of cybersickness in virtual environments. ACM Sigchi Bulletin, 32(1), 47–56.

    Article  Google Scholar 

  36. Da Silva, M. (2022). Cybersickness and postural stability of first time VR users playing VR videogames. Applied Ergonomics, 101, 103698.

    Article  Google Scholar 

  37. Paillard, A. C., Quarck, G., Paolino, F., Denise, P., Paolino, M., Golding, J. F., & Ghulyan-Bedikian, V. (2013). Motion sickness susceptibility in healthy subjects and vestibular patients: Effects of gender, age and trait-anxiety. Journal of Vestibular Research, 23(4–5), 203–209.

    Google Scholar 

  38. Bergström, B. (1973). Morphology of the vestibular nerve: II. The number of myelinated vestibular nerve fibers in man at various ages. Acta oto-laryngologica, 76(1–6), 173–179.

    Article  Google Scholar 

  39. Tian, N. (2022). A review of cybersickness in head-mounted displays: Raising attention to individual susceptibility. Virtual Reality, 26(4), 1409–1441.

    Article  Google Scholar 

  40. Yang, A. H. X., Kasabov, N., & Cakmak, Y. O. (2022).  Machine learning methods for the study of cybersickness: A systematic review. Brain Informatics, 9, 1–24.

    Article  MathSciNet  Google Scholar 

  41. Kemeny, A., George, P., Mérienne, F., & Colombet, F. (2017). New VR navigation techniques to reduce cybersickness. In Electronic imaging, the engineering reality of virtual reality (pp. 48–53).

    Google Scholar 

  42. Parduzi, A., Venrooij, J., Marker, S. (2020). The effect of head-mounted displays on the behavioural validity of driving simulators. In Proceedings of the driving simulation conference, driving simulation association (pp. 125–132).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Kemeny .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kemeny, A. (2024). Virtual and Augmented Reality. In: Autonomous Vehicles and Virtual Reality. Springer, Cham. https://doi.org/10.1007/978-3-031-45263-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45263-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45262-8

  • Online ISBN: 978-3-031-45263-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics