Skip to main content

An Investigation into the Impact of Deep Learning Model Choice on Sex and Race Bias in Cardiac MR Segmentation

  • Conference paper
  • First Online:
Clinical Image-Based Procedures, Fairness of AI in Medical Imaging, and Ethical and Philosophical Issues in Medical Imaging (CLIP 2023, EPIMI 2023, FAIMI 2023)

Abstract

In medical imaging, artificial intelligence (AI) is increasingly being used to automate routine tasks. However, these algorithms can exhibit and exacerbate biases which lead to disparate performances between protected groups. We investigate the impact of model choice on how imbalances in subject sex and race in training datasets affect AI-based cine cardiac magnetic resonance image segmentation. We evaluate three convolutional neural network-based models and one vision transformer model. We find significant sex bias in three of the four models and racial bias in all of the models. However, the severity and nature of the bias varies between the models, highlighting the importance of model choice when attempting to train fair AI-based segmentation models for medical imaging tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018). https://doi.org/10.1109/TMI.2018.2837502. ISSN: 1558254X

    Article  Google Scholar 

  2. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol. 13803. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25066-8_9

  3. Chen, C., et al.: Improving the generalizability of convolutional neural network-based segmentation on CMR images. Front. Cardiovasc. Med. 7, 105 (2020). https://doi.org/10.3389/FCVM.2020.00105. ISSN: 2297055X

    Article  Google Scholar 

  4. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  5. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (2010). https://doi.org/10.1109/cvpr.2009.5206848

  6. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  7. Everingham, M., et al.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015). https://doi.org/10.1007/S11263-014-0733-5. ISSN: 15731405

    Article  Google Scholar 

  8. Isensee, F., et al.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2020). https://doi.org/10.1038/s41592-020-01008-z. ISSN: 1548–7105

    Article  Google Scholar 

  9. Larrazabal A.J., et al.: Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 23, pp. 12592–12594 (2020). https://doi.org/10.1073/pnas.1919012117. ISSN: 10916490

  10. Lee T., et al.: A systematic study of race and sex bias in CNN-based cardiac MR segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS, vol. 13593, pp. 233–244. Springer Science and Business Media Deutschland GmbH (2022). https://doi.org/10.1007/978-3-031-23443-9_22. ISBN: 9783031234422

  11. Mehrabi N., et al.: A survey on bias and fairness in machine learning. In: ACM Computing Surveys (2019). https://doi.org/10.1145/3457607. ISSN: 15577341

  12. Petersen E., et al.: Feature robustness and sex differences in medical imaging: a case study in MRI-based Alzheimer’s disease detection. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS, vol. 13431, pp. 88–98 (2022). https://doi.org/10.1007/978-3-031-16431-6_9. ISSN: 16113349

  13. Petersen, S.E., et al.: UK biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18(1), 1–7 (2016). https://doi.org/10.1186/s12968-016-0227-4. ISSN: 1532429X

    Article  Google Scholar 

  14. Puyol-Antón, E., et al.: Fairness in cardiac magnetic resonance imaging: assessing sex and racial bias in deep learning-based segmentation. Front. Cardiovasc. Med. 9, 859310 (2022). https://doi.org/10.3389/FCVM.2022.859310. ISSN: 2297–055X

    Article  Google Scholar 

  15. Puyol-Antón E., et al.: Fairness in cardiac MR image analysis: an investigation of bias due to data imbalance in deep learning based segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, LNCS, vol. 12903, pp. 413–423. Springer International Publishing (2021). https://doi.org/10.1007/978-3-030-87199-4_39. ISBN: 9783030871987

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9351, pp. 234–241 (2015). https://doi.org/10.1007/978-3-319-24574-4_28/COVER. ISSN: 16113349

  17. Seyyed-Kalantari, L., et al.: Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Medicine 27(12), 2176–2182 (2021). https://doi.org/10.1038/s41591-021-01595-0. ISSN: 1078–8956

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering & Physical Sciences Research Council Doctoral Training Partnership (EPSRC DTP) grant EP/T517963/1. This research has been conducted using the UK Biobank Resource under Application Number 17806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiarna Lee .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 216 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, T., Puyol-Antón, E., Ruijsink, B., Aitcheson, K., Shi, M., King, A.P. (2023). An Investigation into the Impact of Deep Learning Model Choice on Sex and Race Bias in Cardiac MR Segmentation. In: Wesarg, S., et al. Clinical Image-Based Procedures, Fairness of AI in Medical Imaging, and Ethical and Philosophical Issues in Medical Imaging. CLIP EPIMI FAIMI 2023 2023 2023. Lecture Notes in Computer Science, vol 14242. Springer, Cham. https://doi.org/10.1007/978-3-031-45249-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45249-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45248-2

  • Online ISBN: 978-3-031-45249-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics