Skip to main content

Extracting Interpretable Hierarchical Rules from Deep Neural Networks’ Latent Space

  • Conference paper
  • First Online:
Rules and Reasoning (RuleML+RR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14244))

Included in the following conference series:

  • 324 Accesses

Abstract

Deep neural networks, known for their superior learning capabilities, excel in identifying complex relationships between inputs and outputs, leveraging hierarchical, distributed data processing. Despite their impressive performance, these networks often resemble ’black boxes’ due to their highly intricate internal structure and representation, raising challenges in terms of safety, ethical standards, and social norms. Decompositional rule extraction techniques have sought to address these issues by delving into the latent space and retrieving a broad set of symbolic rules. However, the interpretability of these rules is often hampered by their size and complexity. In this paper, we introduce EDICT (Extracting Deep Interpretable Concepts using Trees), a novel approach for rule extraction which employs a hierarchy of decision trees to mine concepts learned in a neural network, thereby generating highly interpretable rules. Evaluations across multiple datasets reveal that our method extracts rules with greater speed and interpretability compared to existing decompositional rule extraction techniques. Simultaneously, our approach demonstrates competitive performance in classification accuracy and model fidelity.

This work has been partially funded by the German Federal Ministry for Economic Affairs and Climate Action within the project “KI Wissen” (19A20020J).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://drive.google.com/file/d/1eU8LUdBueWYI1O2ae_LlqJeqw0EztHB1/view?usp=sharing.

References

  1. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl.-Based Syst. 8(6), 373–389 (1995). https://doi.org/10.1016/0950-7051(96)81920-4

    Article  Google Scholar 

  2. Benitez, J., Castro, J., Requena, I.: Are artificial neural networks black boxes? IEEE Trans. Neural Netw. 8(5), 1156–1164 (1997). https://doi.org/10/cr3mjs

  3. Blanc, G., Lange, J., Tan, L.Y.: Top-down induction of decision trees: rigorous guarantees and inherent limitations. arXiv preprint arXiv:1911.07375 (2019). https://doi.org/10.48550/arXiv.1911.07375

  4. Bock, R.: MAGIC Gamma Telescope. UCI Machine Learning Repository (2007). https://doi.org/10.24432/C52C8B

  5. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression trees. Wadsworth Int. Group 37(15), 237–251 (1984). https://doi.org/10.1201/9781315139470

  6. Craven, M., Shavlik, J.: Extracting tree-structured representations of trained networks. In: Touretzky, D., Mozer, M., Hasselmo, M. (eds.) Advances in Neural Information Processing Systems, vol. 8. MIT Press (1995)

    Google Scholar 

  7. Frey, P.W., Slate, D.J.: Letter recognition using Holland-style adaptive classifiers. Mach. Learn. 6(2), 161–182 (1991). https://doi.org/10.1007/BF00114162

    Article  Google Scholar 

  8. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Cognitive Technologies, Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-75197-7

    Book  MATH  Google Scholar 

  9. Fu, L.: Rule generation from neural networks. IEEE Trans. Syst. Man Cybern. 24(8), 1114–1124 (1994). https://doi.org/10.1109/21.299696

    Article  Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol. 2. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  11. He, C., Ma, M., Wang, P.: Extract interpretability-accuracy balanced rules from artificial neural networks: a review. Neurocomputing 387, 346–358 (2020). https://doi.org/10.1016/j.neucom.2020.01.036

    Article  Google Scholar 

  12. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006). https://doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  14. Muggleton, S., Buntine, W.: Machine invention of first-order predicates by inverting resolution. In: Laird, J. (ed.) Machine Learning Proceedings, pp. 339–352. Morgan Kaufmann (1988). https://doi.org/10.1016/B978-0-934613-64-4.50040-2

  15. Sato, M., Tsukimoto, H.: Rule extraction from neural networks via decision tree induction. In: International Joint Conference on Neural Networks Proceedings, vol. 3, pp. 1870–1875. IEEE (2001). https://doi.org/10.1109/IJCNN.2001.938448

  16. Schmitz, G., Aldrich, C., Gouws, F.: ANN-DT: an algorithm for extraction of decision trees from artificial neural networks. IEEE Trans. Neural Netw. 10(6), 1392–1401 (1999). https://doi.org/10/bzvfs2

  17. Sethi, K.K., Mishra, D.K., Mishra, B.: KDRuleEx: a novel approach for enhancing user comprehensibility using rule extraction. In: 2012 Third International Conference on Intelligent Systems Modelling and Simulation, Kota Kinabalu, Malaysia, pp. 55–60. IEEE (2012). https://doi.org/10/gks4jz

  18. Setiono, R., Leow, W.K.: FERNN: an algorithm for fast extraction of rules from neural networks. Appl. Intell. 11 (2000). https://doi.org/10.1023/A:1008307919726

  19. Shams, Z., et al.: REM: an integrative rule extraction methodology for explainable data analysis in healthcare. medRxiv preprint (2021). https://doi.org/10.1101/2021.01.25.21250459

  20. Taha, I., Ghosh, J.: Symbolic interpretation of artificial neural networks. IEEE Trans. Knowl. Data Eng. 11(3), 448–463 (1999). https://doi.org/10/bpjz4s

  21. Thrun, S.B.: Extracting provably correct rules from artificial neural networks. Technical report, University of Bonn (1993). https://dl.acm.org/doi/book/10.5555/895610

  22. Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural networks. Mach. Learn. 13(1), 71–101 (1993). https://doi.org/10.1007/BF00993103

    Article  Google Scholar 

  23. Tsukimoto, H.: Extracting rules from trained neural networks. IEEE Trans. Neural Netw. 11(2), 377–389 (2000). https://doi.org/10/c43brd

  24. Wörmann, J., Bogdoll, D., Bührle, E., Chen, H., Chuo: Knowledge augmented machine learning with applications in autonomous driving: a survey. arXiv preprint (2022). https://doi.org/10.48550/arXiv.2205.04712

  25. Zarlenga, M.E., Shams, Z., Jamnik, M.: Efficient decompositional rule extraction for deep neural networks. arXiv preprint (2022). http://arxiv.org/abs/2111.12628

  26. Zhou, Z.H., Chen, S.F., Chen, Z.Q.: A statistics based approach for extracting priority rules from trained neural networks. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 401–406 (2000). https://doi.org/10.1109/IJCNN.2000.861337

  27. Zilke, J.R., Loza Mencía, E., Janssen, F.: DeepRED – rule extraction from deep neural networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 457–473. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_29

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Paschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Paschke, A. (2023). Extracting Interpretable Hierarchical Rules from Deep Neural Networks’ Latent Space. In: Fensel, A., Ozaki, A., Roman, D., Soylu, A. (eds) Rules and Reasoning. RuleML+RR 2023. Lecture Notes in Computer Science, vol 14244. Springer, Cham. https://doi.org/10.1007/978-3-031-45072-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45072-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45071-6

  • Online ISBN: 978-3-031-45072-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics