Skip to main content

Reactive Correction of Object Placement Errors for Robotic Arrangement Tasks

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 18 (IAS 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 794))

Included in the following conference series:

  • 77 Accesses

Abstract

When arranging objects with robotic arms, the quality of the end result strongly depends on the achievable placement accuracy. However, even the most advanced robotic systems are prone to positioning errors that can occur at different steps of the manipulation process. Ignoring such errors can lead to the partial or complete failure of the arrangement. In this paper, we present a novel approach to autonomously detect and correct misplaced objects by pushing them with a robotic arm. We thoroughly tested our approach both in simulation and on real hardware using a Robotiq two-finger gripper mounted on a UR5 robotic arm. In our evaluation, we demonstrate the successful compensation for different errors injected during the manipulation of regular shaped objects. Consequently, we achieve a highly reliable object placement accuracy in the millimeter range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Videos: youtu.be/yt6Ct6JeoBs (experiments), doi.org/10.5281/zenodo.7925474 (presentation).

References

  1. Pintus, R., Pal, K., Yang, Y., Weyrich, T., Gobbetti, E., Rushmeier, H.: A survey of geometric analysis in cultural heritage: geometric analysis in cultural heritage. Comput. Graph. Forum 35(1), 4–31 (2016)

    Article  Google Scholar 

  2. Kleeberger, K., Bormann, R., Kraus, W., Huber, M.F.: A survey on learning-based robotic grasping. Current Rob. Rep. 1(4), 239–249 (2020)

    Article  Google Scholar 

  3. Furrer, F., Wermelinger, M., Yoshida, H., Gramazio, F., Kohler, M., Siegwart, R., Hutter, M.: Autonomous robotic stone stacking with online next best object target pose planning. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA). pp. 2350–2356 (2017)

    Google Scholar 

  4. von Drigalski, F., Kasaura, K., Beltran-Hernandez, C.C., Hamaya, M., Tanaka, K., Matsubara, T.: Uncertainty-Aware manipulation planning using gravity and environment geometry. IEEE Rob. Autom. Lett. (RA-L) 7(4), 11942–11949 (2022)

    Google Scholar 

  5. Fu, B., Leong, S.K., Lian, X., Ji, X.: 6D Robotic assembly based on RGB-only object pose estimation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2022)

    Google Scholar 

  6. Nägele, L., Hoffmann, A., Schierl, A., Reif, W.: LegoBot: Automated Planning for Coordinated Multi-Robot Assembly of LEGO structures. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 9088–9095 (2020)

    Google Scholar 

  7. Wei, H., Chen, X.X., Miao, X.Y.: Vision-guided fine-operation of robot and its application in eight-puzzle game. Int. J. Intell. Rob. Appl. (2021)

    Google Scholar 

  8. Rodriguez, I., Nottensteiner, K., Leidner, D., Kassecker, M., Stulp, F., Albu-Schaffer, A.: Iteratively Refined Feasibility Checks in Robotic Assembly Sequence Planning. IEEE Rob. Autom. Lett. (RA-L) 4(2), 1416–1423 (2019)

    Google Scholar 

  9. Berscheid, L., Friedrich, C., Kroger, T.: Robot Learning of 6 DoF Grasping using Model-based Adaptive Primitives. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA). pp. 4474–4480 (2021)

    Google Scholar 

  10. Labbé, Y., Carpentier, J., Aubry, M., Sivic, J.: CosyPose: Consistent Multi-view Multi-object 6D Pose Estimation. In: Proceedings of the European Conference on Computer Vision (ECCV). vol. 12362, pp. 574–591 (2020)

    Google Scholar 

  11. Wang, G., Manhardt, F., Tombari, F., Ji, X.: GDR-Net: geometry-guided direct regression network for monocular 6D object pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 16606–16616 (2021)

    Google Scholar 

  12. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes. In: Proceedings of Robotics: Science and Systems (RSS) (2018)

    Google Scholar 

  13. Berscheid, L., Meißner, P., Kröger, T.: Self-Supervised learning for precise pick-and-place without object model. IEEE Trans. Rob. (T-RO) 5(3), 4828–4835 (2020)

    Google Scholar 

  14. Zhao, J.A., Liang, J., Kroemer, O.: Toward precise robotic grasping by probabilistic post-grasp displacement estimation. In: Field and Service Robotics. pp. 131–144. Springer Proc. in Advanced Robotics (2021)

    Google Scholar 

  15. Wei, H., Pan, S., Ma, G., Duan, X.: Vision-Guided hand–eye coordination for robotic grasping and its application in tangram puzzles. AI 2(2), 209–228 (2021)

    Google Scholar 

  16. Mason, M.T.: Mechanics and Planning of Manipulator Pushing Operations. Int. J. Robotics Res. 5(3), 53–71 (1986)

    Article  Google Scholar 

  17. Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W.: Robot Operating System 2: Design, architecture, and uses in the wild. Sci. Rob. 7(66) (2022)

    Google Scholar 

  18. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). vol. 3, pp. 2149–2154 (2004)

    Google Scholar 

  19. Coleman, D., Sucan, I., Chitta, S., Correll, N.: Reducing the barrier to entry of complex robotic software: a move It! case study. J. Softw. Eng. Rob. 5(1), 3–16 (2014)

    Google Scholar 

  20. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985)

    Article  Google Scholar 

  21. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: Int. J. Geogr. Inf. Geovisualization 10(2), 112–122 (1973)

    Google Scholar 

  22. Moré, J.J.: The Levenberg-Marquardt algorithm: Implementation and theory, vol. 630. Lecture Notes in Mathematics, Berlin Springer, 105–116 (1978)

    Google Scholar 

Download references

Acknowledgements

We thank Patrick Reitz for helping with the experiments and Camila Maslatón for supporting with Figs. 1 and 2. This work has partly been supported by the RePAIR project of the European Union’s HORIZON 2020 research and innovation program under grant agreement n\(^\circ \)964854.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Kreis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kreis, B., Menon, R., Adinarayan, B.K., de Heuvel, J., Bennewitz, M. (2024). Reactive Correction of Object Placement Errors for Robotic Arrangement Tasks. In: Lee, SG., An, J., Chong, N.Y., Strand, M., Kim, J.H. (eds) Intelligent Autonomous Systems 18. IAS 2023. Lecture Notes in Networks and Systems, vol 794. Springer, Cham. https://doi.org/10.1007/978-3-031-44981-9_23

Download citation

Publish with us

Policies and ethics