Skip to main content

COVID-19 Lesion Segmentation Framework for the Contrast-Enhanced CT in the Absence of Contrast-Enhanced CT Annotations

  • Conference paper
  • First Online:
Medical Image Learning with Limited and Noisy Data (MILLanD 2023)

Abstract

Medical imaging is a dynamic domain where new acquisition protocols are regularly developed and employed to meet changing clinical needs. Deep learning models for medical image segmentation have proven to be a valuable tool for medical image processing. Creating such a model from scratch requires a lot of effort in terms of annotating new types of data and model training. Therefore, the amount of annotated training data for the new imaging protocol might still be limited. In this work we propose a framework for segmentation of images acquired with a new imaging protocol(contrast-enhanced lung CT) that does not require annotating training data in the new target domain. Instead, the framework leverages the previously developed models, data and annotations in a related source domain. Using contrast-enhanced lung CT data as a target data we demonstrate that unpaired image translation from the non-contrast enhanced source data, combined with self-supervised pretraining achieves 0.726 Dice Score for the COVID-19 lesion segmentation task on the target data, without the necessity to annotate any target data for the model training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann, M., et al.: Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 383(2), 120–128 (2020)

    Article  Google Scholar 

  2. Amodio, M., Krishnaswamy, S.: Travelgan: image-to-image translation by transformation vector learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8975–8984 (2019)

    Google Scholar 

  3. Bai, W., et al.: Self-supervised learning for cardiac MR image segmentation by anatomical position prediction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 541–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_60

    Chapter  Google Scholar 

  4. Baur, C., Albarqouni, S., Navab, N.: Generating highly realistic images of skin lesions with GANs. In: Stoyanov, D., et al. (eds.) CARE/CLIP/OR 2.0/ISIC -2018. LNCS, vol. 11041, pp. 260–267. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01201-4_28

    Chapter  Google Scholar 

  5. Benaim, S., Wolf, L.: One-sided unsupervised domain mapping. Adv. Neural Inf. Proc. Syst. 30 (2017)

    Google Scholar 

  6. Bermúdez, C., Plassard, A.J., Davis, L.T., Newton, A.T., Resnick, S.M., Landman, B.A.: Learning implicit brain MRI manifolds with deep learning. In: Medical Imaging (2018)

    Google Scholar 

  7. Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Biomedical data augmentation using generative adversarial neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 626–634. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_71

    Chapter  Google Scholar 

  8. Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare. ArXiv:2211.02701 (2022)

  9. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. ArXiv:2006.10511 (2020)

  10. Choi, J.W.: Using out-of-the-box frameworks for contrastive unpaired image translation for vestibular schwannoma and cochlea segmentation: an approach for the CrossMoDA challenge. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part II, pp. 509–517. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09002-8_44

    Chapter  Google Scholar 

  11. Connell, M., et al.: Unsupervised segmentation and quantification of COVID-19 lesions on computed tomography scans using cyclegan. Methods 205, 200–209 (2022). https://doi.org/10.1016/j.ymeth.2022.07.007

    Article  Google Scholar 

  12. Doersch, C., Gupta, A.K., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1422–1430 (2015)

    Google Scholar 

  13. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Zhang, K., Tao, D.: Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2422–2431 (2018)

    Google Scholar 

  14. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69, 1173–1185 (2021)

    Article  Google Scholar 

  15. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Proc. Syst. 30 (2017)

    Google Scholar 

  16. Hofmanninger, J., Prayer, F., Pan, J., Röhrich, S., Prosch, H., Langs, G.: Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. Eur. Radiol. Exp. 4(1), 1–13 (2020). https://doi.org/10.1186/s41747-020-00173-2

    Article  Google Scholar 

  17. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  18. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976 (2016)

    Google Scholar 

  19. Kazeminia, S., et al.: GANs for medical image analysis. Artif. Intell. Med. 109, 101938 (2018)

    Article  Google Scholar 

  20. Kong, L., Lian, C., Huang, D., Li, Z., Hu, Y., Zhou, Q.: Breaking the dilemma of medical image-to-image translation. Adv. Neural Inf. Proc. Syst. 34, 1964–1978 (2021)

    Google Scholar 

  21. Li, Z., et al.: Contrastive and selective hidden embeddings for medical image segmentation. IEEE Trans. Med. Imaging 41(11), 3398–3410 (2022)

    Article  Google Scholar 

  22. Morozov, S., et al.: MosMedData: chest CT scans with COVID-19 related findings dataset. medRxiv (2020). https://doi.org/10.1101/2020.05.20.20100362

  23. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  24. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

    Chapter  Google Scholar 

  25. Peng An, Sheng Xu, E.B.T.: CT images in COVID-19 [data set]. Cancer Imaging Arch. 10 (2020), https://doi.org/10.7937/TCIA.2020.GQRY-NC81

  26. Shin, H.-C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1

    Chapter  Google Scholar 

  27. Skandarani, Y., Jodoin, P.M., Lalande, A.: GANs for medical image synthesis: an empirical study. ArXiv:2105.05318 (2021)

  28. Wang, G., et al.: A noise-robust framework for automatic segmentation of COVID-19 pneumonia lesions from CT images. IEEE Trans. Med. Imaging 39(8), 2653–2663 (2020)

    Article  Google Scholar 

  29. Yan, K., et al.: SAM: Self-supervised learning of pixel-wise anatomical embeddings in radiological images. IEEE Trans. Med. Imaging 41(10), 2658–2669 (2020)

    Article  Google Scholar 

  30. Yang, X., He, X., Liang, Y., Yang, Y., Zhang, S., Xie, P.: Transfer learning or self-supervised learning? a tale of two pretraining paradigms. ArXiv:2007.04234 (2020)

  31. Zhou, Z., et al.: Models Genesis: generic autodidactic models for 3d medical image analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 384–393. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_42

    Chapter  Google Scholar 

  32. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryna Kvasnytsia .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5949 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kvasnytsia, M., Berenguer, A.D., Sahli, H., Vandemeulebroucke, J. (2023). COVID-19 Lesion Segmentation Framework for the Contrast-Enhanced CT in the Absence of Contrast-Enhanced CT Annotations. In: Xue, Z., et al. Medical Image Learning with Limited and Noisy Data. MILLanD 2023. Lecture Notes in Computer Science, vol 14307. Springer, Cham. https://doi.org/10.1007/978-3-031-44917-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44917-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47196-4

  • Online ISBN: 978-3-031-44917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics