Skip to main content

A Study on the Effect of Measurement Distance on the Accuracy of Millimeter-Wave Radar Sensing for Heartbeat Measurement

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 18 (IAS 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 795))

Included in the following conference series:

  • 26 Accesses

Abstract

Millimeter-wave radar (mm-wave radar) sensing has great potential for non-contact heartbeat measurement in home monitoring. However, most of the current radar-based measurement is inaccurate. There have been studies reporting signal analysis and processing methods for improving the measuring accuracy. However, the signal-to-noise ratio (SNR) of measured signals needs further improvement. This study aims to explore the possibility of measurement distance between a mm-wave radar and the person to be measured as a key factor to improve the SNR, and thus the measurement accuracy. Two novel evaluation indexes for the quality of radar signals, reflection intensity and the SNR, were proposed, and verified with experiments. The results demonstrated a correlation between these indexes and measurement accuracy, offering insight into determining an appropriate measurement distance for improving accuracy of heartbeat measurement in home monitoring applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fontana, L., Kennedy, B.K., Longo, V.D., Seals, D., Melov, S.: Medical research: treat ageing. Nature 511, 405–407 (2014). https://doi.org/10.1038/511405a

    Article  Google Scholar 

  2. Gupta, P., Moghimi, M.J., Jeong, Y., Gupta, D., Inan, O.T., Ayazi, F.: Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals. npj Digit. Med. 3, 1–8 (2020). https://doi.org/10.1038/s41746-020-0225-7

  3. Mapp, I.D., Davis, L.L., Krowchuk, H.: Prevention of unplanned intensive care unit admissions and hospital mortality by early warning systems. Dimens. Crit. Care Nurs.. Crit. Care Nurs. 32, 300 (2013). https://doi.org/10.1097/DCC.0000000000000004

    Article  Google Scholar 

  4. Xia, W., Li, Y., Dong, S.: Radar-based high-accuracy cardiac activity sensing. IEEE Trans. Instrum. Meas.Instrum. Meas. 70, 1–13 (2021). https://doi.org/10.1109/TIM.2021.3050827

    Article  Google Scholar 

  5. Mercuri, M., Lorato, I.R., Liu, Y.-H., Wieringa, F., Hoof, C.V., Torfs, T.: Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor. Nat Electron. 2, 252–262 (2019). https://doi.org/10.1038/s41928-019-0258-6

    Article  Google Scholar 

  6. Shoushan, M.M., Reyes, B.A., Rodriguez, A.M., Chong, J.W.: Non-contact HR monitoring via smartphone and webcam during different respiratory maneuvers and body movements. IEEE J. Biomed. Health Inform. 25, 602–612 (2021). https://doi.org/10.1109/JBHI.2020.2998399

    Article  Google Scholar 

  7. Bai, J., Sileshi, G., Nordehn, G., Burns, S., Wittmers, L.: Development of laser-based heart sound detection system (2012). https://doi.org/10.4236/jbise.2012.51005

  8. Will, C., Shi, K., Schellenberger, S., Steigleder, T., Michler, F., Fuchs, J., Weigel, R., Ostgathe, C., Koelpin, A.: Radar-based heart sound detection. Sci. Rep. 8, 11551 (2018). https://doi.org/10.1038/s41598-018-29984-5

  9. Kazemi, S., Ghorbani, A., Amindavar, H., Li, C.: Cyclostationary approach to Doppler radar heart and respiration rates monitoring with body motion cancelation using Radar Doppler System. Biomed. Signal Process. Control 13, 79–88 (2014). https://doi.org/10.1016/j.bspc.2014.03.012

    Article  Google Scholar 

  10. Mercuri, M., Torfs, T., Rykunov, M., Laureti, S., Ricci, M., Crupi, F.: Analysis of signal processing methods to reject the DC offset contribution of static reflectors in FMCW radar-based vital signs monitoring. Sensors 22, 9697 (2022). https://doi.org/10.3390/s22249697

    Article  Google Scholar 

  11. Upadhyay, B.R., Baral, A.B., Torlak, M.: Vital sign detection via angular and range measurements with mmWave MIMO radars: algorithms and trials. IEEE Access 10, 106017–106032 (2022). https://doi.org/10.1109/ACCESS.2022.3211527

    Article  Google Scholar 

  12. Wang, W., Jia, Z., Xu, C., Luo, G., Zhang, D., An, N., Zhang, Y.: Feasibility study of practical vital sign detection using millimeter-wave radios. CCF Trans. Pervasive Comp. Interact. 3, 436–452 (2021). https://doi.org/10.1007/s42486-021-00080-4

    Article  Google Scholar 

  13. Alizadeh, M., Shaker, G., Almeida, J.C.M.D., Morita, P.P., Safavi-Naeini, S.: Remote monitoring of human vital signs using mm-wave FMCW radar. IEEE Access 7, 54958–54968 (2019). https://doi.org/10.1109/ACCESS.2019.2912956

    Article  Google Scholar 

  14. Choi, H.-I., Song, H., Shin, H.-C.: Target range selection of FMCW radar for accurate vital information extraction. IEEE Access 9, 1261–1270 (2021). https://doi.org/10.1109/ACCESS.2020.3043013

    Article  Google Scholar 

  15. Jiang, C., Guo, J., He, Y., Jin, M., Li, S., Liu, Y.: mmVib: micrometer-level vibration measurement with mmwave radar. In: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, pp. 1–13. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3372224.3419202

  16. Chatterjee, samprit, Mächler, M.: Robust regression:a weighted least squares approach. Commun. Statis. Theory Methods 26, 1381–1394 (1997). https://doi.org/10.1080/03610929708831988

  17. Ling, Z., Zhou, W., Ren, Y., Wang, J., Guo, L.: Non-contact heart rate monitoring based on millimeter wave radar. IEEE Access 10, 74033–74044 (2022). https://doi.org/10.1109/ACCESS.2022.3190355

    Article  Google Scholar 

  18. Zhadobov, M., Chahat, N., Sauleau, R., Quement, C.L., Drean, Y.L.: Millimeter-wave interactions with the human body: state of knowledge and recent advances. Int. J. Microw. Wirel. Technol.Microw. Wirel. Technol. 3, 237–247 (2011). https://doi.org/10.1017/S1759078711000122

    Article  Google Scholar 

  19. Lambert, M.A., Weir-McCall, J.R., Salsano, M., Gandy, S.J., Levin, D., Cavin, I., Littleford, R., MacFarlane, J.A., Matthew, S.Z., Nicholas, R.S.: Prevalence and distribution of atherosclerosis in a low-to intermediate-risk population: assessment with whole-body MR angiography. Radiology 287, 795–804 (2018)

    Article  Google Scholar 

  20. Bullitt, E., Muller, K.E., Jung, I., Lin, W., Aylward, S.: Analyzing attributes of vessel populations. Med. Image Anal. 9, 39–49 (2005). https://doi.org/10.1016/j.media.2004.06.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, H., Lu, Y., Yang, T., Yu, W. (2024). A Study on the Effect of Measurement Distance on the Accuracy of Millimeter-Wave Radar Sensing for Heartbeat Measurement. In: Lee, SG., An, J., Chong, N.Y., Strand, M., Kim, J.H. (eds) Intelligent Autonomous Systems 18. IAS 2023. Lecture Notes in Networks and Systems, vol 795. Springer, Cham. https://doi.org/10.1007/978-3-031-44851-5_43

Download citation

Publish with us

Policies and ethics