Skip to main content

Various Technologies in Healthcare Waste Management and Disposal

  • Chapter
  • First Online:
Waste Treatment in the Biotechnology, Agricultural and Food Industries

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 27))

  • 135 Accesses

Abstract

The healthcare waste (HCW) generation kept increasing over these few years due to people beginning to conceive of the importance of health. The sudden increase in HCW due to the high usage of personal protective equipment such as face masks, face shields, and gloves during the Covid-19 outbreak resulted in the current HCW management in stress conditions in developing countries. The waste generation rate is based on the number of Covid-19 cases reported in the country. HCW can be categorized into a few types, such as infectious waste, sharp waste, chemical waste, pharmaceutical waste, and nonhazardous waste. Hazardous waste is commonly found in HCWs because it consists of harmful microorganisms which will bring danger to the environment and human health; thus, proper methods for handling HCW must be concerned, and segregation of HCW must be implemented. The selection of HCW treatment methods must be considered to reduce the negative impact on the environment and humans. Due to the significant increase of HCWs during the Covid-19 outbreak, the emergency disposal method needs to be considered to overcome the overloaded of HCWs in the treatment facilities. The co-disposal method can be considered to treat HCW, but this method is only allowed during the emergency period. Many countries discovered that there is a lack of awareness and poor regulations on HCW management. Thus, the laws and regulations on HCW management must be enforced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag:

Silver

Al2O3:

Aluminium oxide

As:

Arsenic

Bi:

Bismuth

BTEX:

Benzene, toluene, ethylbenzene, and xylene isomers

CaO:

Calcium oxide

Cd:

Cadmium

Cl:

Chlorine

Co:

Cobalt

Cr:

Chromium

Cu:

Copper

e.g.:

Example

EHS:

Environmental, health, safety

EPA:

Environmental Protection Agency

ER:

Equivalence ratio

F:

Fluorine

Fe:

Iron

Fe2O3:

Ferrous oxide

GDP:

Gross domestic product

H:

Hydrogen

HCW:

Healthcare waste

HCWGR:

Healthcare waste generation rate

HIV:

Human immunodeficiency virus

HW:

Hospital waste

K2O:

Potassium oxide

LOI:

Loss on ignition

MgO:

Magnesium oxide

MSW:

Municipal solid waste

MSWIFA:

Municipal solid waste incinerator fly ash

MWBA:

Medical waste bottom ash

MWG:

Medical waste generation

MWIFA:

Medical waste incinerator fly ash

MWIS:

Medical waste incinerator sludge

Na2O:

Sodium oxide

ND:

Not determined

Ni:

Nickel

NT:

Not tested

Pb:

Lead

PPE:

Personal protective equipment

Ref:

Reference

S:

Sulfur

SiO2:

Silicon oxide

SO2:

Sulfur trioxide

TEQ:

Toxic equivalents scheme

Ti:

Titanium

TiO2:

Titanium oxide

USA:

United States

USD:

United States dollar

WHO:

World Health Organization

Zn:

Zinc

%:

Percentage

°C:

Degree Celsius

CO2e:

Carbon dioxide equivalent

°F:

Degree Fahrenheit

Kg:

Kilogram

kPa:

kilopascal

kW:

Kilowatt

kWe:

Kilowatt-electric

kWh:

Kilowatt-hour

L:

Liter

mg:

Milligram

mg/L:

Milligram per liter

MHz:

Megahertz

min:

Minutes

MJ:

Megajoule

Nm3:

Newton cubic meter

Vol%:

Volume percent

μg:

Microgram

References

  1. Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. Work Bank Group. ISBN 9781464813290.

    Book  Google Scholar 

  2. Zhou, H., Yu, X., Alhaskawi, A., Dong, Y., Wang, Z., Jin, Q., Hu, X., Liu, Z., Kota, V. G., Abdulla, M. H. A. H., et al. (2022). A deep learning approach for medical waste classification. Scientific Reports, 12, 1–9. https://doi.org/10.1038/s41598-022-06146-2

    Article  CAS  Google Scholar 

  3. Zhao, H., Liu, H., Wei, G., Zhang, N., Qiao, H., Gong, Y., Yu, X., Zhou, J., & Wu, Y. (2022). A review on emergency disposal and management of medical waste during the COVID-19 pandemic in China. Science of the Total Environment, 810, 152302. https://doi.org/10.1016/j.scitotenv.2021.152302

    Article  CAS  Google Scholar 

  4. Zhu, Y., Zhang, Y., Luo, D., Chong, Z., Li, E., & Kong, X. (2021). A review of municipal solid waste in China: Characteristics, compositions, influential factors and treatment technologies. Environment, Development and Sustainability, 23, 6603–6622. https://doi.org/10.1007/s10668-020-00959-9

    Article  Google Scholar 

  5. Purnomo, C. W., Kurniawan, W., & Aziz, M. (2021). Technological review on thermochemical conversion of COVID-19-related medical wastes. Resources, Conservation and Recycling, 167, 105429. https://doi.org/10.1016/j.resconrec.2021.105429

    Article  CAS  Google Scholar 

  6. Polat, E. G. (2022). Medical waste management during coronavirus disease 2019 pandemic at the city level. International journal of Environmental Science and Technology, 19, 3907–3918. https://doi.org/10.1007/s13762-021-03748-7

    Article  CAS  Google Scholar 

  7. Giakoumakis, G., Politi, D., & Sidiras, D. (2021). Medical waste treatment technologies for energy, fuels, and materials production: A review. Energies, 14. https://doi.org/10.3390/en14238065

  8. Dalal, S. P., Dalal, P., Motiani, R., & Solanki, V. (2022). Experimental investigation on recycling of waste pharmaceutical blister powder as partial replacement of fine aggregate in concrete. Resources, Conservation & Recycling Advances, 14, 200076. https://doi.org/10.1016/j.rcradv.2022.200076

    Article  Google Scholar 

  9. Nie, L., Qiao, Z., & Wu, H. (2014). Medical waste management in China: A case study of Xinxiang. Journal of Environmental Protection (Irvine,. Calif), 5, 803–810. https://doi.org/10.4236/jep.2014.510082. Medical.

    Article  Google Scholar 

  10. Puangmanee, S., & Jearanai, M. (2019). Healthcare waste management: A case study of health-promoting hospitals. WIT Transactions on Ecology and the Environment, 231, 389–398. https://doi.org/10.2495/WM180361

    Article  Google Scholar 

  11. Yang, C., & Chunxia, G. (2020). Handbook of emergency disposal and management of medical waste in China. Royal Collins Publishing Company.

    Google Scholar 

  12. Choi Yi, T., & Noor Hazwan Jusoh, M. (2021). Overview of clinical waste management in Malaysia. Frontiers in Water and Environment, 1, 47–57.

    Google Scholar 

  13. Adelodun, B., Ajibade, F. O., Ibrahim, R. G., Ighalo, J. O., Bakare, H. O., Kumar, P., Eid, E. M., Kumar, V., Odey, G., & Choi, K. S. (2021). Insights into hazardous solid waste generation during COVID-19 pandemic and sustainable management approaches for developing countries. Journal of Material Cycles and Waste Management, 23, 2077–2086. https://doi.org/10.1007/s10163-021-01281-w

    Article  CAS  Google Scholar 

  14. Minoglou, M., Gerassimidou, S., & Komilis, D. (2017). Healthcare waste generation worldwide and its dependence on socio-economic and environmental factors. Sustainability, 9. https://doi.org/10.3390/su9020220

  15. Ma, Y., Jia, L., Hou, Y., & Wu, X. (2022). The impact of economic growth and tiered medical policy on the medical waste generation: An empirical analysis based on the environmental Kuznets curve model. Frontiers in Environmental Science, 10, 1–15. https://doi.org/10.3389/fenvs.2022.824435

    Article  Google Scholar 

  16. Dehal, A., Vaidya, A. N., & Kumar, A. R. (2022). Biomedical waste generation and management during COVID-19 pandemic in India: Challenges and possible management strategies. Environmental Science and Pollution Research, 29, 14830–14845. https://doi.org/10.1007/s11356-021-16736-8

    Article  CAS  Google Scholar 

  17. Al-Omran, K., Khan, E., Ali, N., & Bilal, M. (2021). Estimation of COVID-19 generated medical waste in the Kingdom of Bahrain. Science of the Total Environment, 801, 149642. https://doi.org/10.1016/j.scitotenv.2021.149642

    Article  CAS  Google Scholar 

  18. Chowdhury, T., Chowdhury, H., Rahman, M. S., Hossain, N., Ahmed, A., & Sait, S. M. (2022). Estimation of the healthcare waste generation during COVID-19 pandemic in Bangladesh. Science of the Total Environment, 811, 152295. https://doi.org/10.1016/j.scitotenv.2021.152295

    Article  CAS  Google Scholar 

  19. Alazaiza, M. Y. D., Abdelfattah, F. A. M., Al Maskari, T., Bashir, M. J. K., Nassani, D. E., Albahnasawi, A., Abushammala, M. F. M., & Hamad, R. J. (2022). Effect of COVID-19 pandemic on food purchasing and waste generation during the lockdown period in the Sultanate of Oman. Global NEST Journal, 24, 59–64. https://doi.org/10.30955/gnj.004157

    Article  CAS  Google Scholar 

  20. Ye, J., Song, Y., Liu, Y., & Zhong, Y. (2022). Assessment of medical waste generation, associated environmental impact, and management issues after the outbreak of COVID-19: A case study of the Hubei Province in China. PLoS One, 17, 1–17. https://doi.org/10.1371/journal.pone.0259207

    Article  CAS  Google Scholar 

  21. Agamuthu, P., & Barasarathi, J. (2021). Clinical waste management under COVID-19 scenario in Malaysia. Waste Management & Research, 39, 18–26. https://doi.org/10.1177/0734242X20959701

    Article  CAS  Google Scholar 

  22. Nguyen, T. D. T., Kawai, K., & Nakakubo, T. (2021). Estimation of COVID-19 waste generation and composition in Vietnam for pandemic management. Waste Management & Research, 39, 1356–1364. https://doi.org/10.1177/0734242X211052849

    Article  CAS  Google Scholar 

  23. Bhar, A., Biswas, R. K., & Choudhury, A. K. (2022). The influence of COVID-19 pandemic on biomedical waste management, the impact beyond infection. Proceedings of the Indian National Science Academy. https://doi.org/10.1007/s43538-022-00070-9

  24. Peng, J., Wu, X., Wang, R., Li, C., Zhang, Q., & Wei, D. (2020). Medical waste management practice during the 2019–2020 novel coronavirus pandemic: Experience in a general hospital. American Journal of Infection Control, 48, 918–921. https://doi.org/10.1016/j.ajic.2020.05.035

    Article  Google Scholar 

  25. Minnesota Pollution Control Agency Infectious waste: Management guidance for generators (2015)

    Google Scholar 

  26. Blenkharn, J. I. (2009). Sharps management and the disposal of clinical waste. The British Journal of Nursing, 18. https://doi.org/10.12968/bjon.2009.18.14.43353

  27. Hasan, U. A., Hairon, S. M., Yaacob, N. M., Daud, A., Hamid, A. A., Hassan, N., Ariffin, M. F., & Vun, L. Y. (2019). Factors contributing to sharp waste disposal at health care facility among diabetic patients in North-East Peninsular Malaysia. International Journal of Environmental Research and Public Health, 16. https://doi.org/10.3390/ijerph16132251

  28. Dagdelen, S., Deyneli, O., Olgun, N., Siva, Z. O., Sargin, M., Hatun, S., Kulaksizoglu, M., Kaya, A., Gürlek, C. A., Hirsch, L. J., et al. (2018). Turkish Insulin Injection Technique Study: Population characteristics of turkish patients with diabetes who inject insulin and details of their injection practices as assessed by survey questionnaire. Diabetes Therapy, 9, 1629–1645. https://doi.org/10.1007/s13300-018-0464-7

    Article  Google Scholar 

  29. Hussain, A., Shah, Y., Raval, P., & Deroeck, N. (2020). Awareness about sharps disposal leads to significant improvement in healthcare safety: An audit of compliance in the national health service during the COVID-19 pandemic. SN Comprehensive Clinical Medicine, 2, 2550–2553. https://doi.org/10.1007/s42399-020-00624-2

    Article  CAS  Google Scholar 

  30. Rogowska, J., Zimmermann, A., Muszyńska, A., Ratajczyk, W., & Wolska, L. (2019). Pharmaceutical household waste practices: Preliminary findings from a case study in Poland. Environmental Management, 64, 97–106. https://doi.org/10.1007/s00267-019-01174-7

    Article  Google Scholar 

  31. Sasu, S., Kümmerer, K., & Kranert, M. (2012). Assessment of pharmaceutical waste management at selected hospitals and homes in Ghana. Waste Management & Research, 30, 625–630. https://doi.org/10.1177/0734242X11423286

    Article  Google Scholar 

  32. Ariffin, M., & Zakili, T. S. T. (2019). Household pharmaceutical waste disposal in Selangor, Malaysia—Policy, public perception, and current practices. Environmental Management, 64, 509–519. https://doi.org/10.1007/s00267-019-01199-y

    Article  Google Scholar 

  33. Padmanabhan, K. K., & Barik, D. (2019). Health hazards of medical waste and its disposal. In Energy from toxic organic waste for heat and power generation (pp. 99–118). Elsevier Ltd.. ISBN 9780081025284.

    Google Scholar 

  34. Zhao, L., Zhang, F. S., Wang, K., & Zhu, J. (2009). Chemical properties of heavy metals in typical hospital waste incinerator ashes in China. Waste Management, 29, 1114–1121. https://doi.org/10.1016/j.wasman.2008.09.003

    Article  CAS  Google Scholar 

  35. Shen, W., Zhu, N., Xi, Y., Huang, J., Li, F., Wu, P., & Dang, Z. (2022). Effects of medical waste incineration fly ash on the promotion of heavy metal chlorination volatilization from incineration residues. Journal of Hazardous Materials, 425, 128037. https://doi.org/10.1016/j.jhazmat.2021.128037

    Article  CAS  Google Scholar 

  36. Liu, H., Wei, G., & Zhang, R. (2013). Removal of carbon constituents from hospital solid waste incinerator fly ash by column flotation. Waste Management, 33, 168–174. https://doi.org/10.1016/j.wasman.2012.08.019

    Article  CAS  Google Scholar 

  37. Akyıldız, A., Köse, E. T., & Yıldız, A. (2017). Compressive strength and heavy metal leaching of concrete containing medical waste incineration ash. Construction and Building Materials, 138, 326–332. https://doi.org/10.1016/j.conbuildmat.2017.02.017

    Article  CAS  Google Scholar 

  38. Wang, C., Chen, G., Zhu, Y., Yao, D., Wang, W., & Wang, L. (2017). Assessment of leaching behavior and human bioaccessibility of rare earth elements in typical hospital waste incineration ash in China. Frontiers of Environmental Science & Engineering, 11. https://doi.org/10.1007/s11783-017-0946-2

  39. Datta, P., Mohi, G., & Chander, J. (2018). Biomedical waste management in India: Critical appraisal. Journal of Laboratory Physicians, 10, 006–014. https://doi.org/10.4103/jlp.jlp_89_17

    Article  Google Scholar 

  40. Sharif, A., Ashraf, M., Anjum, A. A., Javeed, A., Altaf, I., Akhtar, M. F., Abbas, M., Akhtar, B., & Saleem, A. (2015). Pharmaceutical wastewater being composite mixture of environmental pollutants may be associated with mutagenicity and genotoxicity. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-015-5478-3

  41. Chamberlain, M. Diseases caused by improper healthcare waste disposal. Available online: https://www.danielshealth.com/knowledge-center/disease-from-improper-disposal

  42. Hossain, M. S., Santhanam, A., Nik Norulaini, N. A., & Omar, A. K. M. (2011). Clinical solid waste management practices and its impact on human health and environment – A review. Waste Management, 31, 754–766. https://doi.org/10.1016/j.wasman.2010.11.008

    Article  CAS  Google Scholar 

  43. Andeobu, L., Wibowo, S., & Grandhi, S. (2022). Medical waste from COVID-19 pandemic—A systematic review of management and environmental impacts in Australia. International Journal of Environmental Research and Public Health, 19. https://doi.org/10.3390/ijerph19031381

  44. Adama, M., Esena, R., Fosu-Mensah, B., & Yirenya-Tawiah, D. (2016). Heavy metal contamination of soils around a hospital waste incinerator bottom ash dumps site. Journal of Environmental and Public Health, 2016. https://doi.org/10.1155/2016/8926453

  45. Allen, R. J., Brenniman, G. R., Logue, R. R., & Strand, V. A. (1989). Emission of airborne bacteria from a hospital incinerator. Journal of the Air Pollution Control Association, 39, 164–168. https://doi.org/10.1080/08940630.1989.10466516

    Article  CAS  Google Scholar 

  46. Yan, M., Li, X., Yang, J., Chen, T., Lu, S., Buekens, A. G., Olie, K., & Yan, J. (2012). Sludge as dioxins suppressant in hospital waste incineration. Waste Management, 32, 1453–1458. https://doi.org/10.1016/j.wasman.2012.03.007

    Article  CAS  Google Scholar 

  47. Parida, V. K., Sikarwar, D., Majumder, A., & Gupta, A. K. (2022). An assessment of hospital wastewater and biomedical waste generation, existing legislations, risk assessment, treatment processes, and scenario during COVID-19. Journal of Environmental Management, 308, 114609. https://doi.org/10.1016/j.jenvman.2022.114609

    Article  CAS  Google Scholar 

  48. Liu, F., Liu, H. Q., Wei, G. X., Zhang, R., Zeng, T. T., Liu, G. S., & Zhou, J. H. (2018). Characteristics and treatment methods of medical waste incinerator fly ash: A review. Processes, 6, 1–25. https://doi.org/10.3390/pr6100173

    Article  CAS  Google Scholar 

  49. Bokhoree, C., Beeharry, Y., Makoondlall-Chadee, T., Doobah, T., & Soomary, N. (2014). Assessment of environmental and health risks associated with the management of medical waste in Mauritius. APCBEE Procedia, 9, 36–41. https://doi.org/10.1016/j.apcbee.2014.01.007

    Article  Google Scholar 

  50. Goswami, M., Goswami, P. J., Nautiyal, S., & Prakash, S. (2021). Challenges and actions to the environmental management of bio-medical waste during COVID-19 pandemic in India. Heliyon, 7, e06313. https://doi.org/10.1016/j.heliyon.2021.e06313

    Article  CAS  Google Scholar 

  51. Ghasemi, M. K., & Yusuff, R. B. M. (2016). Advantages and disadvantages of healthcare waste treatment and disposal alternatives: Malaysian scenario. Polish Journal of Environmental Studies, 25, 17–25. https://doi.org/10.15244/pjoes/59322

    Article  Google Scholar 

  52. Kenny, C., & Priyadarshini, A. (2021). Review of current healthcare waste management methods and their effect on global health. Healthcare, 9. https://doi.org/10.3390/healthcare9030284

  53. Lakhouit, A., Schirmer, W. N., Johnson, T. R., Cabana, H., & Cabral, A. R. (2014). Evaluation of the efficiency of an experimental biocover to reduce BTEX emissions from landfill biogas. Chemosphere, 97, 98–101. https://doi.org/10.1016/j.chemosphere.2013.09.120

    Article  CAS  Google Scholar 

  54. Nwachukwu, A. N., & Anonye, D. (2013). The effect of atmospheric pressure on CH4 and CO2 emission from a closed landfill site in Manchester, UK. Environmental Monitoring and Assessment, 185, 5729–5735. https://doi.org/10.1007/s10661-012-2979-0

    Article  CAS  Google Scholar 

  55. Sartaj, M., & Arabgol, R. (2015). Assessment of healthcare waste management practices and associated problems in Isfahan Province (Iran). Journal of Material Cycles and Waste Management, 17, 99–106. https://doi.org/10.1007/s10163-014-0230-5

    Article  Google Scholar 

  56. Xu, L., Dong, K., Zhang, Y., & Li, H. (2020). Comparison and analysis of several medical waste treatment technologies. IOP Conference Series: Earth and Environmental Science, 615. https://doi.org/10.1088/1755-1315/615/1/012031

  57. Özkan, A. (2013). Evaluation of healthcare waste treatment/disposal alternatives by using multi-criteria decision-making techniques. Waste Management & Research, 31, 141–149. https://doi.org/10.1177/0734242X12471578

    Article  CAS  Google Scholar 

  58. Ozbay, G., Jones, M., Gadde, M., Isah, S., & Attarwala, T. (2021). Design and operation of effective landfills with minimal effects on the environment and human health. Journal of Environmental and Public Health, 2021. https://doi.org/10.1155/2021/6921607

  59. Wang, J., Shen, J., Ye, D., Yan, X., Zhang, Y., Yang, W., Li, X., Wang, J., Zhang, L., & Pan, L. (2020). Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus disease 2019 (COVID-19) pandemic in China. Environmental Pollution, 262, 114665. https://doi.org/10.1016/j.envpol.2020.114665

    Article  CAS  Google Scholar 

  60. Messerle, V. E., Mosse, A. L., & Ustimenko, A. B. (2018). Processing of biomedical waste in plasma gasifier. Waste Management, 79, 791–799. https://doi.org/10.1016/j.wasman.2018.08.048

    Article  CAS  Google Scholar 

  61. Manupati, V. K., Ramkumar, M., Baba, V., & Agarwal, A. (2021). Selection of the best healthcare waste disposal techniques during and post COVID-19 pandemic era. Journal of Cleaner Production, 281, 125175. https://doi.org/10.1016/j.jclepro.2020.125175

    Article  CAS  Google Scholar 

  62. Liao, W. T., Wang, Y. F., Tsai, C. H., Tsai, Y. I., Wu, Z. L., & Kuo, Y. M. (2014). Polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) emission behavior during incineration of laboratory wastes. Part 2: PCDD/F profiles and characteristics of output materials. Aerosol and Air Quality Research, 14, 1206–1214. https://doi.org/10.4209/aaqr.2013.05.0141

    Article  CAS  Google Scholar 

  63. Lu, J. W., Zhang, S., Hai, J., & Lei, M. (2017). Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions. Waste Management, 69, 170–186. https://doi.org/10.1016/j.wasman.2017.04.014

    Article  Google Scholar 

  64. Zhou, H., Meng, A., Long, Y., Li, Q., & Zhang, Y. (2015). A review of dioxin-related substances during municipal solid waste incineration. Waste Management, 36, 106–118. https://doi.org/10.1016/j.wasman.2014.11.011

    Article  CAS  Google Scholar 

  65. Li, B., Deng, Z., Wang, W., Fang, H., Zhou, H., Deng, F., Huang, L., & Li, H. (2017). Degradation characteristics of dioxin in the fly ash by washing and ball-milling treatment. Journal of Hazardous Materials, 339, 191–199. https://doi.org/10.1016/j.jhazmat.2017.06.008

    Article  CAS  Google Scholar 

  66. Li, H. W., Lee, W. J., Tsai, P. J., Mou, J. L., Chang-Chien, G. P., & Yang, K. T. (2008). A novel method to enhance polychlorinated dibenzo-p-dioxins and dibenzofurans removal by adding bio-solution in EAF dust treatment plant. Journal of Hazardous Materials, 150, 83–91. https://doi.org/10.1016/j.jhazmat.2007.04.077

    Article  CAS  Google Scholar 

  67. Yoon, Y. W., Jeon, T. W., Son, J. I., Kim, K. Y., Kwon, E. H., Shin, S. K., & Kang, J. G. (2017). Characteristics of PCDDs/PCDFs in stack gas from medical waste incinerators. Chemosphere, 188, 478–485. https://doi.org/10.1016/j.chemosphere.2017.09.010

    Article  CAS  Google Scholar 

  68. Gunes, G., Saral, A., Yildiz, Ş., & Kuzu, S. L. (2015). Determination of optimum dose of adsorbent for PCDD/F removal in the flue gas of a medical waste incineration plant. Chemical Engineering Research and Design, 104, 695–702. https://doi.org/10.1016/j.cherd.2015.10.010

    Article  CAS  Google Scholar 

  69. Hsu, W. T., Liu, M. C., Hung, P. C., Chang, S. H., & Chang, M. B. (2016). PAH emissions from coal combustion and waste incineration. Journal of Hazardous Materials, 318, 32–40. https://doi.org/10.1016/j.jhazmat.2016.06.038

    Article  CAS  Google Scholar 

  70. Van Caneghem, J., Block, C., & Vandecasteele, C. (2014). Destruction and formation of dioxin-like PCBs in dedicated full scale waste incinerators. Chemosphere, 94, 42–47. https://doi.org/10.1016/j.chemosphere.2013.09.008

    Article  CAS  Google Scholar 

  71. Chen, Y., Zhao, R., Xue, J., & Li, J. (2013). Generation and distribution of PAHs in the process of medical waste incineration. Waste Management, 33, 1165–1173. https://doi.org/10.1016/j.wasman.2013.01.011

    Article  CAS  Google Scholar 

  72. Bhatt, K. P., Patel, S., Upadhyay, D. S., & Patel, R. N. (2022). A critical review on solid waste treatment using plasma pyrolysis technology. Chemical Engineering and Processing: Process Intensification, 177, 108989. https://doi.org/10.1016/j.cep.2022.108989

    Article  CAS  Google Scholar 

  73. Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171–197. https://doi.org/10.1016/j.tsep.2017.06.003

    Article  Google Scholar 

  74. Abnisa, F., & Alaba, P. A. (2021). Recovery of liquid fuel from fossil-based solid wastes via pyrolysis technique: A review. Journal of Environmental Chemical Engineering, 9, 106593. https://doi.org/10.1016/j.jece.2021.106593

    Article  CAS  Google Scholar 

  75. Yaman, C. (2020). Application of sterilization process for inactivation of Bacillus stearothermophilus in biomedicalwaste and associated greenhouse gas emissions. Applied Sciences, 10. https://doi.org/10.3390/app10155056

  76. Maamari, O., Mouaffak, L., Kamel, R., Brandam, C., Lteif, R., & Salameh, D. (2016). Comparison of steam sterilization conditions efficiency in the treatment of infectious health care waste. Waste Management, 49, 462–468. https://doi.org/10.1016/j.wasman.2016.01.014

    Article  Google Scholar 

  77. Teng, H., Bao, Z., Jin, D., & Li, Y. (2015). The key problem and solution of medical waste high-temperature steam treatment. In Proc. 2015 Asia-Pacific Energy Equip. Eng. Res. Conf (Vol. 9, pp. 349–353). https://doi.org/10.2991/ap3er-15.2015.82

    Chapter  Google Scholar 

  78. Walters, R. H., Bhatnagar, B., Tchessalov, S., Izutsu, K. I., Tsumoto, K., & Ohtake, S. (2014). Next generation drying technologies for pharmaceutical applications. Journal of Pharmaceutical Sciences, 103, 2673–2695. https://doi.org/10.1002/jps.23998

    Article  CAS  Google Scholar 

  79. Banana, A. A. S., Nik Norulaini, N. A., Baharom, J., Lailaatul Zuraida, M. Y., Rafatullah, M., & Kadir, M. O. A. (2013). Inactivation of pathogenic micro-organisms in hospital waste using a microwave. Journal of Material Cycles and Waste Management, 15, 393–403. https://doi.org/10.1007/s10163-013-0130-0

    Article  CAS  Google Scholar 

  80. Mahdi, A. B., & Gomes, C. (2019). Effects of microwave radiation on micro-organisms in selected materials from healthcare waste. International journal of Environmental Science and Technology, 16, 1277–1288. https://doi.org/10.1007/s13762-018-1741-8

    Article  Google Scholar 

  81. Voudrias, E. A. (2016). Technology selection for infectious medical waste treatment using the analytic hierarchy process. Journal of the Air & Waste Management Association (1995), 66, 663–672. https://doi.org/10.1080/10962247.2016.1162226

    Article  CAS  Google Scholar 

  82. Erdogan, A. A., & Yilmazoglu, M. Z. (2020). Plasma gasification of the medical waste. International Journal of Hydrogen Energy, 46, 29108–29125.

    Article  Google Scholar 

  83. Cai, X., & Du, C. (2021). Thermal plasma treatment of medical waste (Vol. 41). Springer US. ISBN 0123456789.

    Google Scholar 

  84. Kaushal, R., Rohit, & Dhaka, A. K. (2022). A comprehensive review of the application of plasma gasification technology in circumventing the medical waste in a post-COVID-19 scenario. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02434-z

  85. Cahyanti, M. N., Doddapaneni, T. R. K. C., & Kikas, T. (2020). Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements. Bioresource Technology, 301, 122737. https://doi.org/10.1016/j.biortech.2020.122737

    Article  CAS  Google Scholar 

  86. Mamvura, T. A., & Danha, G. (2020). Biomass torrefaction as an emerging technology to aid in energy production. Heliyon, 6, e03531. https://doi.org/10.1016/j.heliyon.2020.e03531

    Article  CAS  Google Scholar 

  87. Nandhini, R., Berslin, D., Sivaprakash, B., Rajamohan, N., & Vo, D. V. N. (2022). Thermochemical conversion of municipal solid waste into energy and hydrogen: A review. Environmental Chemistry Letters, 20, 1645–1669. https://doi.org/10.1007/s10311-022-01410-3

    Article  CAS  Google Scholar 

  88. Świechowski, K., Leśniak, M., & Białowiec, A. (2021). Medical peat waste upcycling to carbonized solid fuel in the torrefaction process. Energies, 14. https://doi.org/10.3390/en14196053

  89. Giakoumakis, G. E., & Sidiras, D. K. (2018). Recycled medical cotton waste modified via torrefaction to be used as an enhanced material for energy production. WSEAS Transactions on Environment and Development, 14, 69–75.

    CAS  Google Scholar 

  90. Chen, W. H., Lin, B. J., Lin, Y. Y., Chu, Y. S., Ubando, A. T., Show, P. L., Ong, H. C., Chang, J. S., Ho, S. H., Culaba, A. B., et al. (2021). Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 82. https://doi.org/10.1016/j.pecs.2020.100887

  91. Ma, Y., Lin, X., Wu, A., Huang, Q., Li, X., & Yan, J. (2020). Suggested guidelines for emergency treatment of medical waste during COVID-19: Chinese experience. Waste Disposal & Sustainable Energy, 2, 81–84. https://doi.org/10.1007/s42768-020-00039-8

    Article  Google Scholar 

  92. Questions and answers related to emergency treatment of COVID-19 medical waste by municipal solid waste incineration facilities (In Chinese). Available online: https://huanbao.bjx.com.cn/news/20200210/1041464.shtml. Accessed on 27 July 2022.

  93. Zhou, X., Guo, C., Shi, X., Wang, S., & Yang, L. (2020). Problems and suggestions on emergency disposal of medical waste during major epidemic. Chinese Journal of Envionmental Engineering, 14, 1705–1709. https://doi.org/10.12030/j.cjee.202003172

    Article  Google Scholar 

  94. Xin, L. Overview of hazardous waste treatment technology. Available online: https://huanbao.bjx.com.cn/news/20211111/1187324.shtml. Accessed on 28 July 2022.

  95. Yan, L. Coronavirus medical waste bruned in cement kiln. Available online: www.ecns.cn/news/2020-02-25/detail-ifztvsqr0580848.shtml%0AMeasures. Accessed on 28 July 2022.

  96. Tsukiji, M.; Gamaralalage, P.J.D.; Pratomo, I.S.Y.; Onogawa, K.; Alverson, K.; Honda, S.; Ternald, D.; Dilley, M.; Fujioka, J.; Condrorini, D. Waste management during the COVID-19 pandemic from response to recovery; 2020. ISBN 9789280737943.

    Google Scholar 

  97. Shuangliu, L., Liang, C., Zheng, Z., Ya, T., & Mengyin, Y. (2021). Research on environmental management of medical waste in the 14th five-year plan. Proceedings of the IOP Conference Series: Earth and Environmental Science, 687, 012022.

    Google Scholar 

  98. Suresh Kumar, A., Muthukannan, M., Arun Kumar, K., Chithambar Ganesh, A., & Kanniga Devi, R. (2022). Influence of incinerated biomedical waste ash and waste glass powder on the mechanical and flexural properties of reinforced geopolymer concrete. Australian Journal of Structural Engineering. https://doi.org/10.1080/13287982.2022.2044613

  99. Suresh Kumar, A., Muthukannan, M., Kanniga Devi, R., Arunkumar, K., & Chithambar Ganesh, A. (2021). Reduction of hazardous incinerated bio-medical waste ash and its environmental strain by utilizing in green concrete. Water Science and Technology, 84, 2780–2792. https://doi.org/10.2166/wst.2021.239

    Article  CAS  Google Scholar 

  100. Mohan, H. T., Jayanarayanan, K., & Mini, K. M. (2022). A sustainable approach for the utilization of PPE biomedical waste in the construction sector. Engineering Science and Technology, an International Journal, 32, 101060. https://doi.org/10.1016/j.jestch.2021.09.006

    Article  Google Scholar 

  101. Koniorczyk, M., Bednarska, D., Masek, A., & Cichosz, S. (2022). Performance of concrete containing recycled masks used for personal protection during coronavirus pandemic. Construction and Building Materials, 324, 126712. https://doi.org/10.1016/j.conbuildmat.2022.126712

    Article  CAS  Google Scholar 

  102. Gao, Q., Shi, Y., Mo, D., Nie, J., Yang, M., Rozelle, S., & Sylvia, S. (2018). Medical waste management in three areas of rural China. PLoS One, 13, 1–13. https://doi.org/10.1371/journal.pone.0200889

    Article  CAS  Google Scholar 

  103. Gao, Q., Liu, K., Song, S., Li, J., Nie, J., Shi, Y., Xia, Y., Johnson, T. P., & Cook, J. (2022). Medical waste management of village clinics in rural China. Journal of Public Health, 30, 1197–1204. https://doi.org/10.1007/s10389-020-01399-5

    Article  Google Scholar 

  104. Zhao, H. L., Wang, L., Liu, F., Liu, H. Q., Zhang, N., & Zhu, Y. W. (2021). Energy, environment and economy assessment of medical waste disposal technologies in China. Science of the Total Environment, 796. https://doi.org/10.1016/j.scitotenv.2021.148964

  105. Geng, Y., Ren, W. x., Xue, B., Fujita, T., Xi, F. m., Liu, Y., & Wang, M. l. (2013). Regional medical waste management in China: A case study of Shenyang. Journal of Material Cycles and Waste Management, 15, 310–320. https://doi.org/10.1007/s10163-013-0118-9

    Article  CAS  Google Scholar 

  106. Jie, M., Cheng, Z., Ai-guo, Z., & Hou-hu, Z. (2021). Study on the current status of medical waste management and its improvement in China. Journal of Ecology and Rural Environment, 37, 953–961. https://doi.org/10.19741/j.issn.1673-4831.2020.0828

    Article  Google Scholar 

  107. Su, M., Wang, Q., & Li, R. (2021). How to dispose of medical waste caused by COVID-19? A case study of China. International Journal of Environmental Research and Public Health, 18. https://doi.org/10.3390/ijerph182212127

  108. Chen, C., Chen, J., Fang, R., Ye, F., Yang, Z., Wang, Z., Shi, F., & Tan, W. (2021). What medical waste management system may cope with COVID-19 pandemic: Lessons from Wuhan. Resources, Conservation and Recycling, 170, 105600. https://doi.org/10.1016/j.resconrec.2021.105600

    Article  CAS  Google Scholar 

  109. Miao, J., Li, J., Wang, F., Xia, X., Deng, S., & Zhang, S. (2022). Characterization and evaluation of the leachability of bottom ash from a mobile emergency incinerator of COVID-19 medical waste: A case study in Huoshenshan Hospital, Wuhan, China. Journal of Environmental Management, 303, 114161. https://doi.org/10.1016/j.jenvman.2021.114161

    Article  CAS  Google Scholar 

  110. Liu, H., & Yao, Z. (2018). Research on mixed and classification simulation models of medical waste-A case study in Beijing, China. Sustainability, 10, 1–16. https://doi.org/10.3390/su10114226

    Article  Google Scholar 

  111. Liu, J., Li, H., Liu, Z., Meng, X., He, Y., & Zhang, Z. (2022). Study on the process of medical waste disinfection by microwave technology. Waste Management, 150, 13–19. https://doi.org/10.1016/j.wasman.2022.06.022

    Article  CAS  Google Scholar 

  112. Kühling, J. G., & Pieper, U. (2012). Management of healthcare waste: Developments in Southeast Asia in the twenty-first century. Waste Management & Research, 30, 100–104. https://doi.org/10.1177/0734242X12452907

    Article  CAS  Google Scholar 

  113. Sangkham, S. (2020). Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Studies in Chemical and Environmental Engineering, 2, 100052. https://doi.org/10.1016/j.cscee.2020.100052

    Article  Google Scholar 

  114. Praveena, S. M., & Aris, A. Z. (2021). The impacts of COVID-19 on the environmental sustainability: A perspective from the Southeast Asian region. Environmental Science and Pollution Research, 28, 63829–63836. https://doi.org/10.1007/s11356-020-11774-0

    Article  CAS  Google Scholar 

  115. Dang, H. T. T., Dang, H. V., & Tran, T. Q. (2021). Insights of healthcare waste management practices in Vietnam. Environmental Science and Pollution Research, 28, 12131–12143. https://doi.org/10.1007/s11356-020-10832-x

    Article  Google Scholar 

  116. Tien Nam, P., Hanh Dung, N., Kim Oanh, N., & Thi Thu, H. (2020). Factors affecting the access to health services among waste collectors in Hanoi, Vietnam: A qualitative study. AIMS Public Health, 7, 478–489. https://doi.org/10.3934/publichealth.2020039

    Article  Google Scholar 

  117. Nguyen, T. (2018). Medical waste and its treatment in Ho Chi Minh. Metropolia University of Applied Sciences.

    Google Scholar 

  118. Omar, D., Nazli, S. N., & Karuppannan, S. A. (2012). Clinical waste management in district hospitals of Tumpat, Batu Pahat and Taiping. Procedia – Social and Behavioral Sciences, 68, 134–145. https://doi.org/10.1016/j.sbspro.2012.12.213

    Article  Google Scholar 

  119. Baaki, T. K., Baharum, M. R., Ali, A. S., Kebangsaan, U., & Centre, M. (2020). Exploring sustainable healthcare waste management implementation in teaching hospitals in Malaysia. Journal of Building Performance, 11, 54–67.

    Google Scholar 

  120. Choo, J. Y., Ng, Y. P., Ariffin Abdul Jamil, A. K., Heng, W. K., Ng, Y. M., Ng, J., & Yap, C. H. (2022). An exploratory study on the knowledge, attitude and practice of sharp disposal among type 2 diabetes mellitus patients in Northern Peninsular Malaysia. Diabetes and Metabolic Syndrome: Clinical Research & Reviews, 16. https://doi.org/10.1016/j.dsx.2022.102479

  121. Hasan, U. A., Hairon, S. M., Yaacob, N. M., Daud, A., Hamid, A. A., Hassan, N., Ariffin, M. F., & Vun, L. Y. (2019). Effectiveness of diabetes community sharp disposal education module in primary care: An experimental study in North-East Peninsular Malaysia. International Journal of Environmental Research and Public Health, 16, 1–15. https://doi.org/10.3390/ijerph16183356

    Article  Google Scholar 

  122. Pokson, C., & Chaiyat, N. (2022). Thermal performance of a combined cooling, heating, and power (CCHP) generation system from infectious medical waste. Case Studies in Chemical and Environmental Engineering, 6, 100221. https://doi.org/10.1016/j.cscee.2022.100221

    Article  CAS  Google Scholar 

  123. Darus, A. R., Intan, T. K., Pohan, P. U., & Supriatmo. (2021). The relationship between solid medical waste knowledge with attitudes and behaviors of students in Medical Professional Education Program (P3D) Faculty of Medicine, Universitas Sumatera Utara. Proceedings of the IOP Conference Series: Earth and Environmental Science, 802, 012049.

    Google Scholar 

  124. Muhjad, M. H., Razy, F., & Hadin, A. F. (2021). The problematics of management personal protection equipment waste related to Covid-19 in Indonesia. Sriwijaya Law Review, 5, 300–308. https://doi.org/10.28946/slrev.Vol5.Iss2.1161.pp300-308

    Article  Google Scholar 

  125. Himayati, N., Joko, T., & Raharjo, M. (2021). Description of the characteristics of solid medical waste in the environment during the COVID – 19 pandemic: Case study hospital X Covid-19 Referral in Semarang City. Proceedings of the IOP Conference Series: Earth and Environmental Science, 940, 012042.

    Google Scholar 

  126. Aryantie, M. H., Widodo, T., Wahyuni, R., Purwanto, B., & Hidayat, M. Y. (2021). Projection of incinerators for medical waste processing during a pandemic: A case study of COVID-19 in Jakarta Province. IOP Conference Series: Earth and Environmental Science, 909. https://doi.org/10.1088/1755-1315/909/1/012011

  127. Pinto, A. D., Jalloul, H., Nickdoost, N., Sanusi, F., Choi, J., & Abichou, T. (2022). Challenges and adaptive measures for U.S. municipal solid waste management systems during the COVID-19 pandemic. Sustainability, 14. https://doi.org/10.3390/su14084834

  128. Mei, X., Hao, H., Sun, Y., Wang, X., & Zhou, Y. (2021). Optimization of medical waste recycling network considering disposal capacity bottlenecks under a novel coronavirus pneumonia outbreak. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16027-2

  129. Zhao, X., & Klemeš, J. J. (2022). Fengqi you energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19. Renewable and Sustainable Energy Reviews, 153, 111786. https://doi.org/10.1016/j.rser.2021.111786

    Article  CAS  Google Scholar 

  130. Wang, G., Li, J., Saberian, M., Rahat, M. H. H., Massarra, C., Buckhalter, C., Farrington, J., Collins, T., & Johnson, J. (2022). Use of COVID-19 single-use face masks to improve the rutting resistance of asphalt pavement. Science of the Total Environment, 826, 154118. https://doi.org/10.1016/j.scitotenv.2022.154118

    Article  CAS  Google Scholar 

  131. Shinn, H. K., Hwang, Y., Kim, B. G., Yang, C., Na, W. J., Song, J. H., & Lim, H. K. (2017). Segregation for reduction of regulated medical waste in the operating room: A case report. Korean Journal of Anesthesiology, 70, 100–104. https://doi.org/10.4097/kjae.2017.70.1.100

    Article  Google Scholar 

  132. Yoon, C.-W., Kim, M.-J., Park, Y.-S., Jeon, T.-W., & Lee, M.-Y. (2022). A review of medical waste management systems in the Republic of Korea for hospital and medical waste generated from the COVID-19 pandemic. Sustainability, 14. https://doi.org/10.3390/su14063678

  133. Ray, S. S., Lee, H. K., Huyen, D. T. T., Chen, S. S., & Kwon, Y. N. (2022). Microplastics waste in environment: A perspective on recycling issues from PPE kits and face masks during the COVID-19 pandemic. Environmental Technology and Innovation, 26, 102290. https://doi.org/10.1016/j.eti.2022.102290

    Article  CAS  Google Scholar 

  134. Farooq, A., Lee, J., Song, H., Ko, C. H., Lee, I. H., Kim, Y. M., Rhee, G. H., Pyo, S., & Park, Y. K. (2022). Valorization of hazardous COVID-19 mask waste while minimizing hazardous byproducts using catalytic gasification. Journal of Hazardous Materials, 423, 127222. https://doi.org/10.1016/j.jhazmat.2021.127222

    Article  CAS  Google Scholar 

  135. Jung, S., Lee, S., Dou, X., & Kwon, E. E. (2021). Valorization of disposable COVID-19 mask through the thermo-chemical process. Chemical Engineering Journal, 405, 126658. https://doi.org/10.1016/j.cej.2020.126658

    Article  CAS  Google Scholar 

  136. Ikeda, Y. (2017). Current status of home medical care waste collection by nurses in Japan. Journal of the Air & Waste Management Association (1995), 67, 139–143. https://doi.org/10.1080/10962247.2016.1228551

    Article  Google Scholar 

  137. Ishijima, H., Miyamoto, N., Masaule, F., & John, R. (2021). Improvements to healthcare waste management at regional referral hospitals in Tanzania using the KAIZEN Approach. The TQM Journal. https://doi.org/10.1108/TQM-10-2020-0254

  138. Fonseca, J. D., Grause, G., Kameda, T., & Yoshioka, T. (2015). Effects of steam on the thermal dehydrochlorination of poly(vinyl chloride) resin and flexible poly(vinyl chloride) under atmospheric pressure. Polymer Degradation and Stability, 117, 8–15. https://doi.org/10.1016/j.polymdegradstab.2015.03.011

    Article  CAS  Google Scholar 

  139. Roddis, N., & Tudor, T. (2020). An evaluation of the management of offensive waste from the national health service in England: A case study approach. Waste Management & Research, 38, 745–752. https://doi.org/10.1177/0734242X20901554

    Article  Google Scholar 

  140. Rizan, C., Reed, M., & Bhutta, M. F. (2021). Environmental impact of personal protective equipment distributed for use by health and social care services in England in the first six months of the COVID-19 pandemic. Journal of the Royal Society of Medicine, 114, 250–263. https://doi.org/10.1177/01410768211001583

    Article  Google Scholar 

  141. Rizan, C., Bhutta, M. F., Reed, M., & Lillywhite, R. (2021). The carbon footprint of waste streams in a UK hospital. Journal of Cleaner Production, 286, 125446. https://doi.org/10.1016/j.jclepro.2020.125446

    Article  CAS  Google Scholar 

Download references

Acknowledgment

I would like to acknowledge the editors for inviting me to contribute to this chapter. I would also like to thank Professor Dr. Hamidi Abdul Aziz for supporting me to complete the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidi Abdul Aziz .

Editor information

Editors and Affiliations

Glossary

Cement kiln

Used for the pyro processing stage of manufacture of Portland and other types of hydraulic cement

Compressive strength

The capacity of a material or structure to withstand loads tending to reduce size

Dioxins

Group of chemical compounds that are persistent organic pollutants in the environment

Equivalent ratio

The ratio of real and stoichiometric ratios between mass flow rate of oxidizer and fuel feeds

Flexural strength

Stress at failure in bending

Gross domestic product (GDP)

Total monetary or market value of all the finished goods and services produced within a country’s borders in a specific period

Healthcare waste

Subset of wastes generated at health care facilities that may be contaminated by blood, body fluids, or other potential materials

Hepatitis

Inflammation of the liver

Human immunodeficiency virus (HIV)

Virus that attacks the body’s immune system

Incineration

Waste treatment process that involves combustion of substances contained in the waste materials

Infectious waste

Waste infected with cultures, blood/bodily fluids, and waste from infected patients

Landfill

Dump site for the disposal of waste materials

Meningitis

Inflammation of the fluid and membranes surrounding the brain and spinal cord

Microwave sterilization

Steam-based technique that employs high-intensity radiation to heat the moisture in a waste sample or to add additional steam to sterilize infected and harmful substances

Municipal solid waste (MSW)

Waste collected by the municipality or disposed of at the municipal waste disposal site and includes residential, industrial, institutional, commercial, and construction

Pathological waste

Waste consists of human or animal tissue or body part

Plasma technology

Use of an electric current that is conducted through an inert gas to ionize and induce an electric arc to generate high temperature

Pyrolysis

Process by which waste is decomposed in the absence of oxygen under high temperature

Split tensile strength

A method of determining the tensile strength of concrete using a cylinder which splits across the vertical diameter

Steam sterilization

Moisture heat treatment technique that applies on the transmission medium with high-temperature steam

Tensile strength

Maximum stress that a material can withstand before it stretches and breaks

Torrefaction

Process of depolymerizing biomass

World Health Organization (WHO)

Specialized agency of the United Nations responsible for international public health

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, W.S., Aziz, H.A., Wang, L.K., Wang, MH.S., Hung, YT. (2024). Various Technologies in Healthcare Waste Management and Disposal. In: Wang, L.K., Sung Wang, MH., Hung, YT. (eds) Waste Treatment in the Biotechnology, Agricultural and Food Industries. Handbook of Environmental Engineering, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-44768-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44768-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44767-9

  • Online ISBN: 978-3-031-44768-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics