Skip to main content

Abstract

Accumulating evidence suggests that the mammalian carotid body (CB) constitutes a neurogenic center that contains a functionally active germinal niche. A variety of transcription factors is required for the generation of a precursor cell pool in the developing CB. Most of them are later silenced in their progeny, thus allowing for the maturation of the differentiated neurons. In the adult CB, neurotransmitters and vascular cytokines released by glomus cells upon exposure to chronic hypoxia act as paracrine signals that induce proliferation and differentiation of pluripotent stem cells, neuronal and vascular progenitors. Key proliferation markers such as Ki-67 and BrdU are widely used to evaluate the proliferative status of the CB parenchymal cells in the initial phase of this neurogenesis. During hypoxia sustentacular cells which are dormant cells in normoxic conditions can proliferate and differentiate into new glomus cells. However, more recent data have revealed that the majority of the newly formed glomus cells is derived from the glomus cell lineage itself. The mature glomus cells express numerous trophic and growth factors, and their corresponding receptors, which act on CB cell populations in autocrine or paracrine ways. Some of them initially serve as target-derived survival factors and then as signaling molecules in developing vascular targets. Morphofunctional insights into the cellular interactions in the CB stem cell microenvironment can be helpful in further understanding the therapeutic potential of the CB cell niche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aloe L, Levi-Montalcini R (1980) Comparative studies on the effects elicited by pre- and postnatal injections of anti-NGF, guanethidine, and 6-hydroxydopamine in chromaffin and ganglion cells of the adrenal medulla and carotid body in infant rats. Adv Biochem Psychopharmacol 25:221–226

    CAS  PubMed  Google Scholar 

  • Annese V, Navarro-Guerrero E, Rodríguez-Prieto I, Pardal R (2017) Physiological plasticity of neural-crest-derived stem cells in the adult mammalian carotid body. Cell Rep 19:471–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atanasova DY, Lazarov NE (2013) Immunohistochemical localization of some neurotrophic factors and their receptors in the rat carotid body. Neurosci Med 4:284–289

    Article  CAS  Google Scholar 

  • Atanasova DY, Lazarov NE (2014) Expression of neurotrophic factors and their receptors in the carotid body of spontaneously hypertensive rats. Respir Physiol Neurobiol 202:6–15

    Article  CAS  PubMed  Google Scholar 

  • Bavis RW, Blegen HJ, Logan S, Fallon SC, McDonough AB (2015) Role of TrkB during the postnatal development of the rat carotid body. Respir Physiol Neurobiol 219:18–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady R, Zaidi SIA, Mayer C, Katz DM (1999) BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. J Neurosci 19:2131–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chisaka O, Capecchi MR (1991) Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene Hox-1.5. Nature 350:473–479

    Article  CAS  PubMed  Google Scholar 

  • Dauger S, Pattyn A, Lofaso F, Gaultier C, Goridis C, Gallego J, Brunet J-F (2003) Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development 130:6635–6642

    Article  CAS  PubMed  Google Scholar 

  • De Caro R, Macchi V, Sfriso MM, Porzionato A (2013) Structural and neurochemical changes in the maturation of the carotid body. Resp Physiol Neurobiol 185:9–19

    Article  Google Scholar 

  • Erickson JT, Brosenitsch TA, Katz DM (2001) Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. J Neurosci 21:581–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fielding JW, Hodson EJ, Cheng X, Ferguson DJP, Eckardt L, Adam J, Lip P, Maton-Howarth M, Ratnayaka I, Pugh CW, Buckler KJ, Ratcliffe PJ, Bishop T (2018) PHD2 inactivation in type I cells drives HIF-2α-dependent multilineage hyperplasia and the formation of paraganglioma-like carotid bodies. J Physiol 596:4393–4412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishman MC, Schaffner AE (1984) Carotid body cell culture and selective growth of glomus cells. Am J Physiol 246:C106–C113

    Article  CAS  PubMed  Google Scholar 

  • Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476

    Article  CAS  PubMed  Google Scholar 

  • Haubst N, Favor J, Götz M (2005) The role of Pax6 in the nervous system during development and in adulthood: master control regulator or modular function? In: Thiel G (ed) Transcription factors in the nervous system: development, brain function, and diseases. Wiley, pp 23–51

    Chapter  Google Scholar 

  • Hendershot J, Liu H, Clouthier DE, Shepherd IT, Coppola E, Studer M, Firulli AB, Pittman DL, Howard MJ (2008) Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression or development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev Biol 319:179–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockman D, Adameyko I, Kaucka M, Barraud P, Otani T, Hunt A, Hartwig AC, Sock E, Waithe D, Franck MCM, Ernfors P, Ehinger S, Howard MJ, Brown N, Reese J, Baker CVH (2018) Striking parallels between carotid body glomus cell and adrenal chromaffin cell development. Dev Biol 444(Suppl 1):S308–S324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huettl RE, Eckstein S, Stahl T, Petricca S, Ninkovic J, Götz M, Huber AB (2016) Functional dissection of the Pax6 paired domain: roles in neural tube patterning and peripheral nervous system development. Dev Biol 413:86–103

    Article  CAS  PubMed  Google Scholar 

  • Izal-Azcárate A, Belzunegui S, Sebastián WS, Garrido-Gil P, Vázquez-Claverie M, López B, Marcilla I, Luquin MA (2008) Immunohistochemical characterization of the rat carotid body. Respir Physiol Neurobiol 161:95–99

    Article  PubMed  Google Scholar 

  • Johnson JE, Birren SJ, Anderson DJ (1990) Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors. Nature 346:858–861

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (2005) Mash1 is required for glomus cell formation in the mouse carotid body. Dev Biol 283:128–139

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (2014) Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res 357:527–548

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (2020) Molecular and cellular mechanisms of the organogenesis and development of the mammalian carotid body. Dev Dyn 249:592–609

    Article  PubMed  Google Scholar 

  • Kameda Y (2021) Comparative morphological and molecular studies on the oxygen-chemoreceptive cells in the carotid body and fish gills. Cell Tissue Res 384:255–273

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Nishimaki T, Takeichi M, Chisaka O (2002) Homeobox gene Hoxa3 is essential for the formation of the carotid body in the mouse embryos. Dev Biol 247:197–209

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Saitoh T, Nemoto N, Katoh T, Iseki S (2012) Hes1 is required for the development of the superior cervical ganglion of sympathetic trunk and the carotid body. Dev Dyn 241:1289–1300

    Article  CAS  PubMed  Google Scholar 

  • Lawson W (1980) The neuroendocrine nature of the glomus cells: an experimental, ultrastructural, and histochemical tissue culture study. Laryngoscope 90:120–144

    Article  CAS  PubMed  Google Scholar 

  • Leitner ML, Wanga LH, Osborne PA, Golden JP, Milbrandt J, Johnson EM (2005) Expression and function of GDNF family ligands and receptors in the carotid body. Exp Neurol 191:S68–S79

    Article  CAS  PubMed  Google Scholar 

  • Macías D, Fernández-Agüera MC, Bonilla-Henao V, López-Barneo J (2014) Deletion of the von Hippel-Lindau gene causes sympathoadrenal cell death and impairs chemoreceptor-mediated adaptation to hypoxia. EMBO Mol Med 6:1577–1592

    Article  PubMed  PubMed Central  Google Scholar 

  • Macías D, Cowburn AS, Torres-Torrelo H, Ortega-Sáenz P, López-Barneo J, Johnson RS (2018) HIF-2α is essential for carotid body development and function. eLife 7:e34681

    Google Scholar 

  • Navarro-Guerrero E, Platero-Luengo A, Linares-Clemente P, Cases I, López-Barneo J, Pardal R (2016) Gene expression profiling supports the neural crest origin of adult rodent carotid body stem cells and identifies CD10 as a marker for mesectoderm-committed progenitors. Stem Cells 34:1637–1650

    Google Scholar 

  • Nosrat CA, Tomac A, Lindqvist E, Lindskog S, Humpel C, Stromberg I, Ebendal T, Hoffer BJ, Olson L (1996) Cellular expression of GDNF mRNA suggests multiple functions inside and outside the nervous system. Cell Tissue Res 286:191–207

    Article  CAS  PubMed  Google Scholar 

  • Nurse CA, Vollmer C (1997) Role of basic FGF and oxygen in control of proliferation, survival, and neuronal differentiation in carotid body chromaffin cells. Dev Biol 184:197–206

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Sáenz P, Pardal R, Levitsky K, Villadiego J, Muñoz-Manchado AB, Durán R, Bonilla-Henao V, Arias-Mayenco I, Sobrino V, Ordóñez A, Oliver M, Toledo-Aral JJ, López-Barneo J (2013) Cellular properties and chemosensory responses of the human carotid body. J Physiol 591:6157–6173

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortega-Sáenz P, Villadiego J, Pardal R, Toledo-Aral JJ, López-Barneo J (2015) Neurotrophic properties, chemosensory responses and neurogenic niche of the human carotid body. In: Peers C, Kumar P, Wyatt C, Gauda E, Nurse CA, Prabhakar N (eds) Arterial chemoreceptors in physiology and pathophysiology, vol 860. Springer, Cham, pp 139–152

    Chapter  Google Scholar 

  • Pardal R (2023) The adult carotid body: a germinal niche at the service of physiology. In: Conde SV, Iturriaga R, del Rio R, Gauda E, Monteiro EC (eds) Arterial chemoreceptors, ISAC XXI 2022, vol 1427. Springer, Cham, pp. 13–22

    Google Scholar 

  • Pardal R, López-Barneo J (2012) Neural stem cells and transplantation studies in Parkinson’s disease. In: López-Larrea C, López-Vázquez A, Suárez-Álvarez B (eds) Stem cell transplantation, vol 741. Springer, New York, pp 206–216

    Google Scholar 

  • Pardal R, López-Barneo J (2016) Mature neurons modulate neurogenesis through chemical signals acting on neural stem cells. Dev Growth Differ 58:456–462

    Article  PubMed  Google Scholar 

  • Pardal R, Ortega-Sáenz P, Durán R, López-Barneo J (2007) Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131:364–377

    Article  CAS  PubMed  Google Scholar 

  • Pardal R, Ortega-Sáenz P, Durán R, Platero-Luengo A, López-Barneo J (2010) The carotid body, a neurogenic niche in the adult peripheral nervous system. Arch Ital Biol 148:95–105

    CAS  PubMed  Google Scholar 

  • Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:366–370

    Article  CAS  PubMed  Google Scholar 

  • Platero-Luengo A, González-Granero S, Durán R, Díaz-Castro B, Piruat JI, García-Verdugo JM, Pardal R, López-Barneo J (2014) An O2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hypoxia. Cell 156:291–303

    Article  CAS  PubMed  Google Scholar 

  • Porzionato A, Macchi V, Parenti A, De Caro R (2008) Trophic factors in the carotid body. Int Rev Cell Mol Biol 269:1–58

    Article  CAS  PubMed  Google Scholar 

  • Potzner MR, Tsarovina K, Binder E, Penzo-Méndez A, Lefebvre V, Rohrer H, Wegner M, Sock E (2010) Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development 137:775–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux JC, Brismar H, Aperia A, Lagercrantz H (2005) Developmental changes in HIF transcription factor in carotid body: relevance for O2 sensing by chemoreceptors. Pediatric Res 58:53–57

    Article  CAS  Google Scholar 

  • Sobrino V, González-Rodríguez P, Annese V, López-Barneo J, Pardal R (2018) Fast neurogenesis from carotid body quiescent neuroblasts accelerates adaptation to hypoxia. EMBO Rep 19:e44598

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobrino V, Annese V, Pardal R (2019a) Progenitor cell heterogeneity in the adult carotid body germinal niche. In: Birbrair A (ed) Stem cells heterogeneity—novel concepts, vol 1123. Springer, Cham, pp 19–38

    Google Scholar 

  • Sobrino V, Annese V, Navarro-Guerrero E, Platero-Luengo A, Pardal R (2019b) The carotid body: a physiologically relevant germinal niche in the adult peripheral nervous system. Cell Mol Life Sci 76:1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Sobrino V, Platero-Luengo A, Annese V, Navarro-Guerrero E, González-Rodríguez P, López-Barneo J, Pardal R (2020) Neurotransmitter modulation of carotid body germinal niche. Int J Mol Sci 21:8231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocco E, Barbon S, Tortorella C, Macchi V, De Caro R, Porzionato A (2020) Growth factors in the carotid body—an update. Int J Mol Sci 21:E7267

    Article  Google Scholar 

  • Teh APP, Pratakpiriya W, Hidaka Y, Sato H, Hirai T, Yamaguchi R (2017) An atypical case of recurrent carotid body carcinoma in a young adult dog: histopathological, immunohistochemical and electron microscopic study. J Vet Med Sci 79:714–718

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Cui K, Alonso A, Lowenstein ED, Hernandez-Miranda LR (2022) Transcription factors regulating the specification of brainstem respiratory neurons. Front Mol Neurosci 15:1072475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai E. Lazarov .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lazarov, N.E., Atanasova, D.Y. (2023). Stem Cell Niche in the Mammalian Carotid Body. In: Morphofunctional and Neurochemical Aspects of the Mammalian Carotid Body. Advances in Anatomy, Embryology and Cell Biology, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-031-44757-0_9

Download citation

Publish with us

Policies and ethics