Skip to main content

ECOD: A Multi-modal Dataset for Intelligent Adjudication of E-Commerce Order Disputes

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14302))

  • 1578 Accesses

Abstract

With the widespread popularity of e-commerce websites, online order reviews and scores help customers to choose quality products and stores. At the same time, the order dispute problem has gradually attracted attention. Specifically, bad reviews with low scores can have negative impacts on the store, where some unfair and biased reviews mislead other consumers. In order to maintain their reputation, stores usually submit responses against bad reviews. In this paper, we creatively define an intelligent adjudication task of e-commerce order disputes, which aims to judge disputes fairly based on customer reviews and store responses. Moreover, we construct a multi-modal dataset about E-Commerce Order Disputes (ECOD). It contains 6,366 pairs of multi-modal reviews and responses. And each dispute has an adjudication label annotated by business experts. We evaluate the ECOD dataset with baseline models, and analyze the difficulties and challenges in detail. We believe that the proposed dataset will not only facilitate future research in the field of dispute adjudication and multi-modal understanding, but also advance intelligent management for e-commerce websites.

L. Chen—Work done while Liyi Chen was an intern at Meituan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/LiyiLily/ECOD.

  2. 2.

    https://www.yelp.com.

  3. 3.

    http://www.amazon.com.

  4. 4.

    https://www.tripadvisor.com.

References

  1. Chen, C., Teng, Z., Wang, Z., Zhang, Y.: Discrete opinion tree induction for aspect-based sentiment analysis. In: ACL, pp. 2051–2064 (2022)

    Google Scholar 

  2. Chen, Y., Xie, J.: Online consumer review: word-of-mouth as a new element of marketing communication mix. Manage. Sci. 54(3), 477–491 (2008)

    Article  Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: ACL, pp. 4171–4186 (2019)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  6. He, R., Lee, W.S., Ng, H.T., Dahlmeier, D.: Exploiting document knowledge for aspect-level sentiment classification. In: ACL, pp. 579–585 (2018)

    Google Scholar 

  7. Jindal, N., Liu, B.: Opinion spam and analysis. In: WSDM, pp. 219–230 (2008)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Li, H., Chen, Z., Liu, B., Wei, X., Shao, J.: Spotting fake reviews via collective positive-unlabeled learning. In: ICDM, pp. 899–904 (2014)

    Google Scholar 

  10. Maas, A., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: ACL, pp. 142–150 (2011)

    Google Scholar 

  11. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimensions with review text. In: ACM Conference on Recommender Systems, pp. 165–172 (2013)

    Google Scholar 

  12. McAuley, J.J., Leskovec, J.: From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews. In: WWW, pp. 897–908 (2013)

    Google Scholar 

  13. Mohawesh, R., et al.: Fake reviews detection: a survey. IEEE Access 9, 65771–65802 (2021)

    Article  Google Scholar 

  14. Mukherjee, A., Liu, B., Glance, N.: Spotting fake reviewer groups in consumer reviews. In: WWW, pp. 191–200 (2012)

    Google Scholar 

  15. Mukherjee, A., Venkataraman, V., Liu, B., Glance, N.: What yelp fake review filter might be doing? In: AAAI, vol. 7 (2013)

    Google Scholar 

  16. Nilizadeh, S., Aghakhani, H., Gustafson, E., Kruegel, C., Vigna, G.: Lightning talk - think outside the dataset: finding fraudulent reviews using cross-dataset analysis. In: WWW, pp. 1288–1289 (2019)

    Google Scholar 

  17. Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam by any stretch of the imagination. In: ACL, pp. 309–319 (2011)

    Google Scholar 

  18. Ravi, K., Ravi, V.: A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl. Based Syst. 89, 14–46 (2015)

    Article  Google Scholar 

  19. Rayana, S., Akoglu, L.: Collective opinion spam detection: bridging review networks and metadata. In: SIGKDD, pp. 985–994 (2015)

    Google Scholar 

  20. Serrano-Guerrero, J., Olivas, J.A., Romero, F.P., Herrera-Viedma, E.: Sentiment analysis: a review and comparative analysis of web services. Inf. Sci. 311, 18–38 (2015)

    Article  Google Scholar 

  21. Sharma, A., Cosley, D.: Do social explanations work? Studying and modeling the effects of social explanations in recommender systems. In: WWW, pp. 1133–1144 (2013)

    Google Scholar 

  22. Srujan, K., Nikhil, S., Raghav Rao, H., Karthik, K., Harish, B., Keerthi Kumar, H.: Classification of amazon book reviews based on sentiment analysis. In: INDIA, pp. 401–411 (2018)

    Google Scholar 

  23. Sun, K., Zhang, R., Mensah, S., Mao, Y., Liu, X.: Aspect-level sentiment analysis via convolution over dependency tree. In: EMNLP-IJCNLP (2019)

    Google Scholar 

  24. Wolf, T., et al.: HuggingFace’s transformers: state-of-the-art natural language processing. arXiv preprint arXiv:1910.03771 (2019)

  25. Zhang, Z., Dong, Y., Wu, H., Song, H., Deng, S., Chen, Y.: Metapath and syntax-aware heterogeneous subgraph neural networks for spam review detection. Appl. Soft Comput. 128, 109438 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China under grant No. 61976119.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuaipeng Liu or Jie Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Liu, S., Yan, H., Liu, J., Wen, L., Wan, G. (2023). ECOD: A Multi-modal Dataset for Intelligent Adjudication of E-Commerce Order Disputes. In: Liu, F., Duan, N., Xu, Q., Hong, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2023. Lecture Notes in Computer Science(), vol 14302. Springer, Cham. https://doi.org/10.1007/978-3-031-44693-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44693-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44692-4

  • Online ISBN: 978-3-031-44693-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics