Skip to main content

Computer-Guided Approaches to Inpatient Insulin Management

  • Chapter
  • First Online:
Diabetes Management in Hospitalized Patients

Part of the book series: Contemporary Endocrinology ((COE))

  • 251 Accesses

Abstract

Electronic glucose management systems (EGMSs) are software developed with algorithms to manage insulin dosing for persons admitted to the hospital with diabetes and/or hyperglycemia. In general, current software is available for both intravenous and subcutaneous insulin dosing. At a minimum, they provide recommendations for insulin dosing. Advanced EGMS has features promoting patient safety, treatment recommendations for hypoglycemia, transition from intravenous to subcutaneous insulin dosing, and dosage recommendations for discharge from the hospital. EGMSs are not purposed to replace diabetes management teams or endocrinologists but to work adjunctively with current glycemic management efforts. In this chapter, we discuss commonly available EGMSs that are commercially or institutionally developed, benefits in common diabetes-related conditions, as well as advantages and disadvantages of their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan B, Li J, Wu P. The effectiveness of electronic health record promotion for healthcare providers in the United States since the Health Information Technology for Economic and Clinical Health Act: an empirical investigation. Int J Health Plann Manag. 2021;36(2):334–52.

    Article  Google Scholar 

  2. Korytkowski MT, Muniyappa R, Antinori-Lent K, Donihi AC, Drincic AT, Hirsch IB, et al. Management of hyperglycemia in hospitalized adult patients in non-critical care settings: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2022;107(8):2101–28.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang Y, Bullard KM, Imperatore G, Holliday CS, Benoit SR. Proportions and trends of adult hospitalizations with diabetes, United States, 2000–2018. Diabetes Res Clin Pract. 2022;187:109862.

    Article  CAS  PubMed  Google Scholar 

  4. Cui L, Schroeder PR, Sack PA. Inpatient and outpatient technologies to assist in the management of insulin dosing. Clin Diabetes. 2020;38(5):462–73.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aloi J, Bode BW, Ullal J, Chidester P, McFarland RS, Bedingfield AE, et al. Comparison of an electronic glycemic management system versus provider-managed subcutaneous basal bolus insulin therapy in the hospital setting. J Diabetes Sci Technol. 2017;11(1):12–6.

    Article  PubMed  Google Scholar 

  6. Newsom R, Patty C, Camarena E, Sawyer R, McFarland R, Gray T, et al. Safely converting an entire Academic Medical Center from sliding scale to basal bolus insulin via implementation of the eGlycemic management system. J Diabetes Sci Technol. 2018;12(1):53–9.

    Article  PubMed  Google Scholar 

  7. Ullal J, Aloi JA. Subcutaneous insulin dosing calculators for inpatient glucose control. Curr Diab Rep. 2019;19(11):120.

    Article  PubMed  Google Scholar 

  8. Harris S, Nisly SA, Aykroyd L, Carrol J, Ulmer B, Waddell M, et al. Use of a subcutaneous insulin computerized GlucoStabilizer™ program on glycemic control in the intensive care setting: a retrospective data analysis. Adv Diabetes Metab. 2013;1(1):29–35.

    Article  Google Scholar 

  9. Juneja R, Golas AA, Carroll J, Nelson D, Abad VJ, Roudebush CP, et al. Safety and effectiveness of a computerized subcutaneous insulin program to treat inpatient hyperglycemia. J Diabetes Sci Technol. 2008;2(3):384–91.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nolt VD, Araya A, Ateya MB, Chen M, Kelley J, Arnold P, et al. Insulin bolus calculator: lessons learned from institutional experience. J Diabetes Sci Technol. 2021;15(2):265–70.

    Article  PubMed  Google Scholar 

  11. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.

    Article  PubMed  Google Scholar 

  12. Griesdale DE, de Souza RJ, van Dam RM, Heyland DK, Cook DJ, Malhotra A, et al. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;180(8):821–7.

    Article  PubMed  Google Scholar 

  13. Lenz K, Brandt M, Fraund-Cremer S, Cremer J. Coronary artery bypass surgery in diabetic patients—risk factors for sternal wound infections. GMS Interdiscip Plast Reconstr Surg DGPW. 2016;5:Doc18.

    PubMed  PubMed Central  Google Scholar 

  14. Ogawa S, Okawa Y, Sawada K, Goto Y, Yamamoto M, Koyama Y, et al. Continuous postoperative insulin infusion reduces deep sternal wound infection in patients with diabetes undergoing coronary artery bypass grafting using bilateral internal mammary artery grafts: a propensity-matched analysis. Eur J Cardiothorac Surg. 2016;49(2):420–6.

    Article  PubMed  Google Scholar 

  15. Younis M, Pham J, Asad H, Hamarshi MS. Computer-based versus paper-based insulin infusion algorithms in diabetic ketoacidosis. Curr Diabetes Rev. 2020;16(6):628–34.

    Article  CAS  PubMed  Google Scholar 

  16. Alamri N, Seley JJ. Evaluation of several electronic glycemic management systems. J Diabetes Sci Technol. 2018;12(1):60–2.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marvin MR, Inzucchi SE, Besterman BJ. Computerization of the Yale insulin infusion protocol and potential insights into causes of hypoglycemia with intravenous insulin. Diabetes Technol Ther. 2013;15(3):246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marvin MR, Inzucchi SE, Besterman BJ. Minimization of hypoglycemia as an adverse event during insulin infusion: further refinement of the Yale protocol. Diabetes Technol Ther. 2016;18(8):480–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kulasa K, Serences B, Nies M, El-Kareh R, Kurashige K, Box K. Insulin infusion computer calculator programmed directly into electronic health record medication administration record. J Diabetes Sci Technol. 2021;15(2):214–21.

    Article  PubMed  Google Scholar 

  20. Shelden D, Ateya M, Jensen A, Arnold P, Bellomo T, Gianchandani R. Improving hospital glucometrics, workflow, and outcomes with a computerized intravenous insulin dose calculator built into the electronic health record. J Diabetes Sci Technol. 2021;15(2):271–8.

    Article  PubMed  Google Scholar 

  21. Rao RH, Perreiah PL, Cunningham CA. Monitoring the impact of aggressive glycemic intervention during critical care after cardiac surgery with a glycemic expert system for nurse-implemented euglycemia: the MAGIC GENIE Project. J Diabetes Sci Technol. 2021;15(2):251–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Locke C, McEuen J, Felder RS, Lesselroth B, Barrett TW, Stevens B, et al. Evaluating an insulin infusion protocol in an acute care setting. Clin Nurse Spec. 2011;25(5):237–43.

    Article  PubMed  Google Scholar 

  23. Olinghouse C. Development of a computerized intravenous insulin application (AutoCal) at Kaiser Permanente Northwest, integrated into Kaiser Permanente HealthConnect: impact on safety and nursing workload. Perm J. 2012;16(3):67–70.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shetty S, Inzucchi SE, Goldberg PA, Cooper D, Siegel MD, Honiden S. Adapting to the new consensus guidelines for managing hyperglycemia during critical illness: the updated Yale insulin infusion protocol. Endocr Pract. 2012;18(3):363–70.

    Article  PubMed  Google Scholar 

  25. Ekanayake PS, Juang PS, Kulasa K. Review of intravenous and subcutaneous electronic glucose management systems for inpatient glycemic control. Curr Diabetes Rep. 2020;20(12):68.

    Article  Google Scholar 

  26. Rea RS, Donihi AC, Bobeck M, Herout P, McKaveney TP, Kane-Gill SL, et al. Implementing an intravenous insulin infusion protocol in the intensive care unit. Am J Health Syst Pharm. 2007;64(4):385–95.

    Article  PubMed  Google Scholar 

  27. Ullal J, McFarland R, Bachand M, Aloi J. Use of a computer-based insulin infusion algorithm to treat diabetic ketoacidosis in the emergency department. Diabetes Technol Ther. 2016;18(2):100–3.

    Article  CAS  PubMed  Google Scholar 

  28. Ullal J, Aloi JA, Reyes-Umpierrez D, Pasquel FJ, McFarland R, Rabinovich M, et al. Comparison of computer-guided versus standard insulin infusion regimens in patients with diabetic ketoacidosis. J Diabetes Sci Technol. 2018;12(1):39–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Newton CA, Smiley D, Bode BW, Kitabchi AE, Davidson PC, Jacobs S, et al. A comparison study of continuous insulin infusion protocols in the medical intensive care unit: computer-guided vs. standard column-based algorithms. J Hosp Med. 2010;5(8):432–7.

    Article  PubMed  Google Scholar 

  30. Yamashita S, Ng E, Brommecker F, Silverberg J, Adhikari NK. Implementation of the glucommander method of adjusting insulin infusions in critically ill patients. Can J Hosp Pharm. 2011;64(5):333–9.

    PubMed  PubMed Central  Google Scholar 

  31. Davidson PC, Steed RD, Bode BW, Hebblewhite HR, Prevosti L, Cheekati V. Use of a computerized intravenous insulin algorithm within a nurse-directed protocol for patients undergoing cardiovascular surgery. J Diabetes Sci Technol. 2008;2(3):369–75.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Umpierrez G, Cardona S, Pasquel F, Jacobs S, Peng L, Unigwe M, et al. Randomized controlled trial of intensive versus conservative glucose control in patients undergoing coronary artery bypass graft surgery: GLUCO-CABG trial. Diabetes Care. 2015;38(9):1665–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Espina C, Jenkins I, Taylor L, Farah R, Cho E, Epworth J, et al. Blood glucose control using a computer-guided glucose management system in allogeneic hematopoietic cell transplant recipients. Bone Marrow Transplant. 2016;51(7):973–9.

    Article  CAS  PubMed  Google Scholar 

  34. Groysman AY, Peragallo-Dittko V, Islam S, Klek S. Safety and efficacy of glucostabilizer in the management of diabetic ketoacidosis. Endocr Pract. 2020;26(6):627–33.

    Article  PubMed  Google Scholar 

  35. Dinglas C, Muscat J, Adams T, Peragallo-Dittko V, Vintzileos A, Heo HJ. Software-guided insulin dosing improves intrapartum glycemic management in women with diabetes mellitus. Am J Obstet Gynecol. 2018;219(2):191e1–6.

    Article  Google Scholar 

  36. Bruno A, Durkalski VL, Hall CE, Juneja R, Barsan WG, Janis S, et al. The Stroke Hyperglycemia Insulin Network Effort (SHINE) trial protocol: a randomized, blinded, efficacy trial of standard vs. intensive hyperglycemia management in acute stroke. Int J Stroke. 2014;9(2):246–51.

    Article  PubMed  Google Scholar 

  37. Johnston KC, Bruno A, Pauls Q, Hall CE, Barrett KM, Barsan W, et al. Intensive vs standard treatment of hyperglycemia and functional outcome in patients with acute ischemic stroke: the SHINE randomized clinical trial. JAMA. 2019;322(4):326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brown M, Roberts J, Smith C, Eash D. Safety and effectiveness of the use of an electronic glucose monitoring system versus weight-based dosing nomogram for treatment of diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome in a VA Hospital. J Diabetes Sci Technol. 2022;17:727.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Neubauer KM, Mader JK, Holl B, Aberer F, Donsa K, Augustin T, et al. Standardized glycemic management with a computerized workflow and decision support system for hospitalized patients with type 2 diabetes on different wards. Diabetes Technol Ther. 2015;17(10):685–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kreider KE, Lien LF. Transitioning safely from intravenous to subcutaneous insulin. Curr Diab Rep. 2015;15(5):23.

    Article  PubMed  Google Scholar 

  41. Jacobson LA, Jerguson K, Spiva L, Fraser D. Evaluation of an intensive insulin transition protocol in the intensive care unit setting: a before and after study. Pharm Pract (Granada). 2012;10(1):45–51.

    Article  PubMed  Google Scholar 

  42. Ullal J, Dignan C, Cwik R, McFarland R, Gaines M, Aloi JA. Utility of computer-guided decision support system in discharge insulin dosing and diabetes-related readmissions. J Diabetes Sci Technol. 2021;15(2):523–4.

    Article  PubMed  Google Scholar 

  43. Rahal RM, Mercer J, Kuziemsky C, Yaya S. Factors affecting the mature use of electronic medical records by primary care physicians: a systematic review. BMC Med Inform Decis Mak. 2021;21(1):67.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aloi JA, Mulla C, Ullal J, Lieb DC. Improvement in inpatient glycemic care: pathways to quality. Curr Diabetes Rep. 2015;15(4):18.

    Article  Google Scholar 

  45. Mulla CM, Lieb DC, McFarland R, Aloi JA. Tides of change: improving glucometrics in a large multihospital health care system. J Diabetes Sci Technol. 2015;9(3):602–8.

    Article  PubMed  Google Scholar 

  46. Romeo GR, Hirsch IB, Lash RW, Gabbay RA. Trends in the endocrinology fellowship recruitment: reasons for concern and possible interventions. J Clin Endocrinol Metab. 2020;105(6):1701.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Galindo RJ, Aleppo G, Klonoff DC, Spanakis EK, Agarwal S, Vellanki P, et al. Implementation of continuous glucose monitoring in the hospital: emergent considerations for remote glucose monitoring during the COVID-19 pandemic. J Diabetes Sci Technol. 2020;14(4):822–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pasquel FJ, Umpierrez GE. Individualizing inpatient diabetes management during the Coronavirus Disease 2019 Pandemic. J Diabetes Sci Technol. 2020;14(4):705–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shelton C, Demidowich AP, Zilbermint M. Inpatient diabetes management during the COVID-19 crisis: experiences from two community hospitals. J Diabetes Sci Technol. 2020;14(4):780–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wallia A, Prince G, Touma E, El Muayed M, Seley JJ. Caring for hospitalized patients with diabetes mellitus, hyperglycemia, and COVID-19: bridging the remaining knowledge gaps. Curr Diabetes Rep. 2020;20(12):77.

    Article  CAS  Google Scholar 

  51. Ellahham S. Artificial intelligence: the future for diabetes care. Am J Med. 2020;133(8):895–900.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdeesh Ullal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ullal, J., Aloi, J.A. (2023). Computer-Guided Approaches to Inpatient Insulin Management. In: Schulman-Rosenbaum, R.C. (eds) Diabetes Management in Hospitalized Patients. Contemporary Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-031-44648-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44648-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44647-4

  • Online ISBN: 978-3-031-44648-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics