Skip to main content

Use of Non-insulin Agents for Hyperglycemia Management in Hospitalized Patients

  • Chapter
  • First Online:
Diabetes Management in Hospitalized Patients

Part of the book series: Contemporary Endocrinology ((COE))

  • 269 Accesses

Abstract

Hyperglycemia in hospitalized patients predicts increased morbidity and mortality. Basal-bolus insulin represents the primary recommended therapy for inpatient glucose control. Insulin, however, is expensive and can cause hypoglycemia. Newer data demonstrating the safety and efficacy of agents with low hypoglycemia risk are changing the current paradigm. Randomized controlled trials show that DPP-4 inhibitors can safely and effectively treat mild-to-moderate hyperglycemia. Studies on GLP-1 receptor agonists also look encouraging but remain insufficient to definitively recommend use and show increased gastrointestinal side effects. SGLT-2 inhibitors may aid patients with congestive heart failure but pose a risk of ketoacidosis. While metformin appears safe for patients without risk of lactic acidosis, no randomized controlled trials exist to support its use. Sulfonylureas pose significant hypoglycemia risk and should not play a role in inpatient glycemic control. Minimal data address the use of thiazolidinediones, meglitinides, or alpha-glucosidase inhibitors, and each causes side effects that limit inpatient utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inzucchi SE. Clinical practice. Management of hyperglycemia in the hospital setting. N Engl J Med. 2006;355(18):1903–11. https://doi.org/10.1056/NEJMcp060094.

    Article  CAS  PubMed  Google Scholar 

  2. American Diabetes Association. Standards of medical care in diabetes. Diabetes Care. 2005;28(Suppl 1):S4–36. https://doi.org/10.2337/diacare.28.suppl_1.S4.

    Article  Google Scholar 

  3. Umpierrez GE, Hellman R, Korytkowski MT, Kosiborod M, Maynard GA, Montori VM, et al. Management of hyperglycemia in hospitalized patients in non-critical care setting: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(1):16–38. https://doi.org/10.1210/jc.2011-2098.

    Article  CAS  PubMed  Google Scholar 

  4. Moghissi ES, Korytkowski MT, DiNardo M, Einhorn D, Hellman R, Hirsch IB, et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care. 2009;32(6):1119–31. https://doi.org/10.2337/dc09-9029.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Korytkowski MT, Muniyappa R, Antinori-Lent K, Donihi AC, Drincic AT, Hirsch IB, et al. Management of hyperglycemia in hospitalized adult patients in non-critical care settings: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2022;107(8):2101–28. https://doi.org/10.1210/clinem/dgac278.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Blonde L, Umpierrez GE, Reddy SS, McGill JB, Berga SL, Bush M, et al. American Association of Clinical Endocrinology clinical practice guideline: developing a diabetes mellitus comprehensive care plan-2022 update. Endocr Pract. 2022;28(10):923–1049. https://doi.org/10.1016/j.eprac.2022.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ramzan S, Timmins P, Hasan SS, Babar ZU. Trends in global prescribing of antidiabetic medicines in primary care: a systematic review of literature between 2000–2018. Prim Care Diabetes. 2019;13(5):409–21. https://doi.org/10.1016/j.pcd.2019.05.009.

    Article  PubMed  Google Scholar 

  8. American Diabetes Association Professional Practice Committee, Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, Freeman R, et al. 16. Diabetes care in the hospital: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S244–53. https://doi.org/10.2337/dc22-S016.

    Article  Google Scholar 

  9. Montejano L, Vo L, McMorrow D. Transitions of care for people with type 2 diabetes: utilization of antihyperglycemic agents pre- and post-hospitalization. Diabetes Ther. 2016;7(1):91–103. https://doi.org/10.1007/s13300-015-0148-5.

    Article  CAS  PubMed  Google Scholar 

  10. Lalau JD. Lactic acidosis induced by metformin: incidence, management and prevention. Drug Saf. 2010;33(9):727–40. https://doi.org/10.2165/11536790-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  11. Lepelley M, Giai J, Yahiaoui N, Chanoine S, Villier C. Lactic acidosis in diabetic population: is metformin implicated? Results of a matched case-control study performed on the type 2 diabetes population of Grenoble Hospital University. J Diabetes Res. 2016;2016:3545914. https://doi.org/10.1155/2016/3545914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010;2010(4):CD002967. https://doi.org/10.1002/14651858.CD002967.pub4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pasquel FJ, Klein R, Adigweme A, et al. Metformin-associated lactic acidosis. Am J Med Sci. 2015;349:263–7. https://doi.org/10.1097/MAJ.0b013e3182a562b7.

    Article  PubMed  Google Scholar 

  14. DeFronzo R, Fleming GA, Chen K, et al. Metformin-associated lactic acidosis: current perspectives on causes and risk. Metabolism. 2016;65(2):20–9. https://doi.org/10.1016/j.metabol.2015.10.014.

    Article  CAS  PubMed  Google Scholar 

  15. Alauddin T, Petite SE. Evaluation of the safety and efficacy of metformin use in hospitalized, non-critically ill patients. J Pharm Technol. 2020;36(3):102–9. https://doi.org/10.1177/8755122520911689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharabash HM, Remington TL, Mar P, et al. Retrospective review of metformin in inpatients and outpatients at the University of Michigan. Diabetes Care. 2006;29(1):170–1. https://doi.org/10.2337/diacare.29.1.170-a.

    Article  PubMed  Google Scholar 

  17. Calabrese AT, Coley KC, DaPos SV, et al. Evaluation of prescribing practices: risk of lactic acidosis with metformin therapy. Arch Intern Med. 2002;162(4):434–7. https://doi.org/10.1001/archinte.162.4.434.

    Article  PubMed  Google Scholar 

  18. Li J, Wei Q, McCowen K, et al. Inpatient use of metformin and acarbose is associated with reduced mortality of COVID-19 patients with type 2 diabetes mellitus. Endocr Diabetes Metab. 2022;5(1):e00301. https://doi.org/10.1002/edm2.301.

    Article  CAS  Google Scholar 

  19. Tamura R, Said S, de Freitas L, et al. Outcome and death risk of diabetes patients with COVID-19 receiving pre-hospital and in-hospital metformin therapies. Diabetol Metab Syndr. 2021;13:76. https://doi.org/10.1186/s13098-021-00695-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lukito AA, Pranata R, Henrina J, et al. The effect of metformin consumption on mortality in hospitalized COVID-19 patients: a systematic review and meta-analysis. Diabetes Metab Syndr. 2020;14(6):2177–83. https://doi.org/10.1016/j.dsx.2020.11.006.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bennett WL, Maruthur NM, Singh S, Segal JB, Wilson LM, Chatterjee R, et al. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med. 2011;154(9):602–13. https://doi.org/10.7326/0003-4819-154-9-201105030-00336.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Winterstein AG, Jeon N, Staley B, Xu D, Henriksen C, Lipori GP. Development and validation of an automated algorithm for identifying patients at high risk for drug-induced hypoglycemia. Am J Health Syst Pharm. 2018;75(21):1714–28. https://doi.org/10.2146/ajhp180071.

    Article  PubMed  Google Scholar 

  23. Ruan Y, Bellot A, Moysova Z, Tan GD, Lumb A, Davies J, et al. Predicting the risk of inpatient hypoglycemia with machine learning using electronic health records. Diabetes Care. 2020;43(7):1504–11. https://doi.org/10.2337/dc19-1743.

    Article  CAS  PubMed  Google Scholar 

  24. Stuart K, Adderley NJ, Marshall T, Rayman G, Sitch A, Manley S, et al. Predicting inpatient hypoglycemia in hospitalized patients with diabetes: a retrospective analysis of 9584 admissions with diabetes. Diabet Med. 2017;34(10):1385–91. https://doi.org/10.1111/dme.13409.

    Article  CAS  PubMed  Google Scholar 

  25. Deusenberry CM, Coley KC, Korytkowski MT, Donihi AC. Hypoglycemia in hospitalized patients treated with sulfonylureas. Pharmacotherapy. 2012;32(7):613–7. https://doi.org/10.1002/j.1875-9114.2011.01088.x.

    Article  CAS  PubMed  Google Scholar 

  26. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, et al. Newly expressed SUR1-regulated NCCa-ATP channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;4:433–40. https://doi.org/10.1038/nm1390.

    Article  CAS  Google Scholar 

  27. Kunte H, Schmidt S, Eliasziw M, del Zoppo GJ, Simard JM, Masuhr F, et al. Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke. 2007;38(9):2526–30. https://doi.org/10.1161/STROKEAHA.107.482216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsivgoulis G, Goyal N, Iftikhar S, Zand R, Chang JJ, Elijovich L, et al. Sulfonylurea pretreatment and in-hospital use does not impact acute ischemic strokes (AIS) outcomes following intravenous thrombolysis. J Stroke Cerebrovasc Dis. 2017;26(4):795–800. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.10.019.

    Article  PubMed  Google Scholar 

  29. Favilla CG, Mullen MT, Ali M, Higgins P, Kasner SE, Virtual International Stroke Trials Archive (VISTA) Collaboration. Sulfonylurea use before stroke does not influence outcome. Stroke. 2011;42(3):710–5. https://doi.org/10.1161/STROKEAHA.110.599274.

    Article  CAS  PubMed  Google Scholar 

  30. Turchin A, Matheny ME, Shubina M, Scanlon JV, Greenwood B, Pendergrass ML. Hypoglycemia and clinical outcomes in patients with diabetes hospitalized in the general ward. Diabetes Care. 2009;32(7):1153–7. https://doi.org/10.2337/dc08-2127.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Smith U. Pioglitazone: mechanism of action. Int J Clin Pract Suppl. 2001;121:13–8.

    CAS  Google Scholar 

  32. Lee J, Reding M. Effects of thiazolidinediones on stroke recovery: a case-matched controlled study. Neurochem Res. 2007;32(4–5):635–8. https://doi.org/10.1007/s11064-006-9138-3.

    Article  CAS  PubMed  Google Scholar 

  33. Aronoff S, Rosenblatt S, Braithwaite S, Egan JW, Mathisen AL, Schneider RL. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care. 2000;23(11):1605–11. https://doi.org/10.2337/diacare.23.11.160.

    Article  CAS  PubMed  Google Scholar 

  34. Yang H, Li J, Liu S, Yang X, Liu J. Predicting risk of hypoglycemia in patients with type 2 diabetes by electronic health record-based machine learning: development and validation. JMIR Med Inform. 2022;10(6):e36958. https://doi.org/10.2196/36958.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mathioudakis NN, Abusamaan MS, Shakarchi AF, Sokolinsky S, Fayzullin S, McGready J, et al. Development and validation of a machine learning model to predict near-term risk of iatrogenic hypoglycemia in hospitalized patients. JAMA Netw Open. 2021;4(1):e2030913. https://doi.org/10.1001/jamanetworkopen.2020.30913.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Umpierrez GE, Gianchandani R, Smiley D, Jacobs S, Wesorick DH, Newton C, et al. Safety and efficacy of sitagliptin therapy for the inpatient management of general medicine and surgery patients with type 2 diabetes: a pilot, randomized, controlled study. Diabetes Care. 2013;36(11):3430–5. https://doi.org/10.2337/dc13-0277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pasquel FJ, Gianchandani R, Rubin DJ, Dungan KM, Anzola I, Gomez PC, et al. Efficacy of sitagliptin for the hospital management of general medicine and surgery patients with type 2 diabetes (Sita-Hospital): a multicentre, prospective, open-label, non-inferiority randomised trial. Lancet Diabetes Endocrinol. 2017;5(2):125–33. https://doi.org/10.1016/S2213-8587(16)30402-8.

    Article  CAS  PubMed  Google Scholar 

  38. Garg R, Schuman B, Hurwitz S, Metzger C, Bhandari S. Safety and efficacy of saxagliptin for glycemic control in non-critically ill hospitalized patients. BMJ Open Diabetes Res Care. 2017;5(1):e000394. https://doi.org/10.1136/bmjdrc-2017-000394.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vellanki P, Rasouli N, Baldwin D, Alexanian S, Anzola I, Urrutia M, et al. Glycaemic efficacy and safety of linagliptin compared to a basal-bolus insulin regimen in patients with type 2 diabetes undergoing non-cardiac surgery: a multicentre randomized clinical trial. Diabetes Obes Metab. 2019;21(4):837–43. https://doi.org/10.1111/dom.13587.

    Article  CAS  PubMed  Google Scholar 

  40. Pérez-Belmonte LM, Osuna-Sánchez J, Millán-Gómez M, López-Carmona MD, Gómez-Doblas JJ, Cobos-Palacios L, et al. Glycaemic efficacy and safety of linagliptin for the management of non-cardiac surgery patients with type 2 diabetes in a real-world setting: Lina-Surg study. Ann Med. 2019;51(3–4):252–61. https://doi.org/10.1080/07853890.2019.1613672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Batule S, Ramos A, Pérez-Montes de Oca A, Fuentes N, Martínez S, Raga J, et al. Comparison of glycemic variability and hypoglycemic events in hospitalized older adults treated with basal insulin plus vildagliptin and basal-bolus insulin regimen: a prospective randomized study. J Clin Med. 2022;11(10):2813. https://doi.org/10.3390/jcm11102813.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Drucker DJ, Sherman SI, Gorelick FS, Bergenstal RM, Sherwin RS, Buse JB. Incretin-based therapies for the treatment of type 2 diabetes: evaluation of the risks and benefits. Diabetes Care. 2010;33(2):428–33. https://doi.org/10.2337/dc09-1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scirica BM, Braunwald E, Raz I, Cavender MA, Morrow DA, Jarolim P, SAVOR-TIMI 53 Steering Committee and Investigators*, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014;130(18):1579–88. https://doi.org/10.1161/CIRCULATIONAHA.114.010389.

    Article  CAS  PubMed  Google Scholar 

  44. Zannad F, Cannon CP, Cushman WC, Bakris GL, Menon V, Perez AT, EXAMINE Investigators, et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet. 2015;385(9982):2067–76. https://doi.org/10.1016/S0140-6736(14)62225-X.

    Article  CAS  PubMed  Google Scholar 

  45. Aroda VR. A review of GLP-1 receptor agonists: evolution and advancement, through the lens of randomised controlled trials. Diabetes Obes Metab. 2018;20(Suppl 1):22–33. https://doi.org/10.1111/dom.13162.

    Article  CAS  PubMed  Google Scholar 

  46. American Diabetes Association Professional Practice Committee. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2022. Diabetes Care. 2022;45(Suppl 1):S125–43. https://doi.org/10.2337/dc22-S009.

    Article  Google Scholar 

  47. Sokos GG, Bolukoglu H, German J, Hentosz T, Magovern GJ Jr, Maher TD, et al. Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol. 2007;100(5):824–9. https://doi.org/10.1016/j.amjcard.2007.05.022.

    Article  CAS  PubMed  Google Scholar 

  48. Kohl BA, Hammond MS, Cucchiara AJ, Ochroch EA. Intravenous GLP-1 (7–36) amide for prevention of hyperglycemia during cardiac surgery: a randomized, double-blind, placebo-controlled study. J Cardiothorac Vasc Anesth. 2014;28(3):618–25. https://doi.org/10.1053/j.jvca.2013.06.021.

    Article  CAS  PubMed  Google Scholar 

  49. Lipš M, Mráz M, Kloučková J, Kopecký P, Dobiáš M, Křížová J, et al. Effect of continuous exenatide infusion on cardiac function and peri-operative glucose control in patients undergoing cardiac surgery: a single-blind, randomized controlled trial. Diabetes Obes Metab. 2017;19(12):1818–22. https://doi.org/10.1111/dom.13029.

    Article  CAS  PubMed  Google Scholar 

  50. Besch G, Perrotti A, Mauny F, Puyraveau M, Baltres M, Flicoteaux G, et al. Clinical effectiveness of intravenous exenatide infusion in perioperative glycemic control after coronary artery bypass graft surgery: a phase II/III randomized trial. Anesthesiology. 2017;127(5):775–87. https://doi.org/10.1097/ALN.0000000000001838.

    Article  CAS  PubMed  Google Scholar 

  51. Hulst AH, Visscher MJ, Godfried MB, Thiel B, Gerritse BM, Scohy TV, et al. Liraglutide for perioperative management of hyperglycaemia in cardiac surgery patients: a multicentre randomized superiority trial. Diabetes Obes Metab. 2020;22(4):557–65. https://doi.org/10.1111/dom.13927.

    Article  CAS  PubMed  Google Scholar 

  52. Meier JJ, Weyhe D, Michaely M, Senkal M, Zumtobel V, Nauck MA, et al. Intravenous glucagon-like peptide 1 normalizes blood glucose after major surgery in patients with type 2 diabetes. Crit Care Med. 2004;32(3):848–51. https://doi.org/10.1097/01.ccm.0000114811.60629.b5.

    Article  CAS  PubMed  Google Scholar 

  53. Polderman JAW, van Steen SCJ, Thiel B, Godfried MB, Houweling PL, Hollmann MW, et al. Peri-operative management of patients with type-2 diabetes mellitus undergoing non-cardiac surgery using liraglutide, glucose–insulin–potassium infusion or intravenous insulin bolus regimens: a randomised controlled trial. Anaesthesia. 2018;73(3):332–9. https://doi.org/10.1111/anae.14180.

    Article  CAS  PubMed  Google Scholar 

  54. Del Olmo-García MI, Hervás Marín D, Caudet Esteban J, Ballesteros Martin-Portugués A, Cerveró Rubio A, Arnau Vives MA, et al. Glycemic variability in type 2 diabetes mellitus and acute coronary syndrome: liraglutide compared with insulin glargine: a pilot study. J Int Med Res. 2020;48(6):300060520926063. https://doi.org/10.1177/0300060520926063.

    Article  CAS  PubMed  Google Scholar 

  55. Uchinuma H, Ichijo M, Harima N, Tsuchiya K. Dulaglutide improves glucocorticoid-induced hyperglycemia in inpatient care and reduces dose and injection frequency of insulin. BMC Endocr Disord. 2020;20(1):58. https://doi.org/10.1186/s12902-020-0542-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fayfman M, Galindo RJ, Rubin DJ, Mize DL, Anzola I, Urrutia MA, et al. A randomized controlled trial on the safety and efficacy of exenatide therapy for the inpatient management of general medicine and surgery patients with type 2 diabetes. Diabetes Care. 2019;42(3):450–6. https://doi.org/10.2337/dc18-1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fushimi N, Shibuya T, Yoshida Y, Ito S, Hachiya H, Mori A. Dulaglutide-combined basal plus correction insulin therapy contributes to ideal glycemic control in non-critical hospitalized patients. J Diabetes Investig. 2020;11(1):125–31. https://doi.org/10.1111/jdi.13093.

    Article  CAS  PubMed  Google Scholar 

  58. Verma V, Kotwal N, Upreti V, Nakra M, Singh Y, Shankar KA, et al. Liraglutide as an alternative to insulin for glycemic control in intensive care unit: a randomized, open-label, clinical study. Indian J Crit Care Med. 2017;21(9):568–72. https://doi.org/10.4103/ijccm.IJCCM_105_17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74. https://doi.org/10.7326/0003-4819-159-4-201308200-00007.

    Article  PubMed  Google Scholar 

  60. Braunwald E. Gliflozins in the management of cardiovascular disease. N Engl J Med. 2022;386(21):2024–34. https://doi.org/10.1056/NEJMra2115011.

    Article  CAS  PubMed  Google Scholar 

  61. Fitchett D. A safety update on sodium glucose co-transporter 2 inhibitors. Diabetes Obes Metab. 2019;21(Suppl 2):34–42. https://doi.org/10.1111/dom.13611.

    Article  CAS  PubMed  Google Scholar 

  62. Fleming N, Hamblin PS, Story D, Ekinci EI. Evolving evidence of diabetic ketoacidosis in patients taking sodium-glucose cotransporter 2 inhibitors. J Clin Endocrinol Metab. 2020;105(8):2475–86. https://doi.org/10.1210/clinem/dgaa200.

    Article  Google Scholar 

  63. US Food and Drug Administration: FDA Drug Safety Communication. 2020. https://www.fda.gov/drugs/drug-safety-and-availability/fda-revises-labels-sglt2-inhibitors-diabetes-include-warnings-about-too-much-acid-blood-and-serious. Accessed Apr 2023.

  64. Kosiborod MN, Esterline R, Furtado RHM, Oscarsson J, Gasparyan SB, Koch GG, et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021;9(9):586–94. https://doi.org/10.1016/S2213-8587(21)00180-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Damman K, Beusekamp JC, Boorsma EM, Swart HP, Smilde TDJ, Elvan A, et al. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur J Heart Fail. 2020;22(4):713–22. https://doi.org/10.1002/ejhf.1713.

    Article  CAS  PubMed  Google Scholar 

  66. Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021;384(2):117–28. https://doi.org/10.1056/NEJMoa2030183.

    Article  CAS  PubMed  Google Scholar 

  67. Voors AA, Angermann CE, Teerlink JR, Collins SP, Kosiborod M, Biegus J, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat Med. 2022;28(3):568–74. https://doi.org/10.1038/s41591-021-01659-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cox ZL, Collins SP, Aaron M, Hernandez GA, Iii ATM, Davidson BT, et al. Efficacy and safety of dapagliflozin in acute heart failure: rationale and design of the DICTATE-AHF trial. Am Heart J. 2021;232:116–24. https://doi.org/10.1016/j.ahj.2020.10.071.

    Article  CAS  PubMed  Google Scholar 

  69. Selwyn J, Pichardo-Lowden AR. Managing hospitalized patients taking SGLT2 inhibitors: reducing the risk of euglycemic diabetic ketoacidosis. Diabetology. 2023;4(1):86–92. https://doi.org/10.3390/diabetology4010010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yael T. Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harris, Y.T., Reich, D.M., Li, X.Q. (2023). Use of Non-insulin Agents for Hyperglycemia Management in Hospitalized Patients. In: Schulman-Rosenbaum, R.C. (eds) Diabetes Management in Hospitalized Patients. Contemporary Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-031-44648-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44648-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44647-4

  • Online ISBN: 978-3-031-44648-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics