Skip to main content

Diabetes and COVID-19

  • Chapter
  • First Online:
Diabetes Management in Hospitalized Patients

Abstract

The relationship between COVID-19 and diabetes is best described as bidirectional. Patients with diabetes are at higher risk of severe COVID-19 infection, acute and chronic sequelae and conversely, some evidence suggests that COVID-19 itself may lead to acute hyperglycemia and as well as more persistent metabolic alterations that are associated with increased risk of developing diabetes mellitus later. The impact of the virus includes both direct viral action, encouragement of a proinflammatory state, and the effects of various treatments, for example, dexamethasone.

It is clear that many people were newly diagnosed with diabetes at the time they presented with COVID-19 infection. These diagnoses represent not only the impact of the infection itself as a “final push” for patients otherwise predisposed to hyperglycemia, but also reflects a large portion of the population that had undiagnosed diabetes who otherwise would not have sought medical attention. The latter in particular shows the impact of healthcare disparities across various demographics as patients with a new diagnosis of diabetes tended to be non-white and underinsured. These findings represent an opportunity to improve not only care for patients with COVID-19 but also for patients with diabetes mellitus as has been showcased by the emergence of the more widespread use of continuous glucose monitoring in the hospital setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDC:

Centers for Disease Control and Prevention

CGM:

Continuous glucose monitoring

DPP-4:

Dipeptidyl Peptidase-4

FDA:

Food and Drug Administration

HbA1c:

Hemoglobin A1c

IL:

Interleukin

IRS-1:

Insulin receptor substrate 1

POC:

Point-of-care

TNF-α:

Tumor Necrosis Factor-alpha

References

  1. Spanakis EK, Yoo A, Ajayi ON, Siddiqui T, Khan MM, Seliger SL, et al. Excess mortality in COVID-19-positive versus COVID-19-negative inpatients with diabetes: a nationwide study. Diabetes Care. 2021;44(9):e169–e70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Almeida-Pititto B, Dualib PM, Zajdenverg L, Dantas JR, de Souza FD, Rodacki M, et al. Severity and mortality of COVID 19 in patients with diabetes, hypertension and cardiovascular disease: a meta-analysis. Diabetol Metab Syndr. 2020;12:75.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barron E, Bakhai C, Kar P, Weaver A, Bradley D, Ismail H, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gregory JM, Slaughter JC, Duffus SH, Smith TJ, LeStourgeon LM, Jaser SS, et al. COVID-19 severity is tripled in the diabetes community: a prospective analysis of the pandemic’s impact in type 1 and type 2 diabetes. Diabetes Care. 2021;44(2):526–32.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Li H, Zhang J, Cao Y, Zhao X, Yu N, et al. The clinical characteristics and outcomes of patients with diabetes and secondary hyperglycaemia with coronavirus disease 2019: a single-Centre, retrospective, observational study in Wuhan. Diabetes Obes Metab. 2020;22(8):1443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yuan S, Li H, Chen C, Wang F, Wang DW. Association of glycosylated haemoglobin HbA1c levels with outcome in patients with COVID-19: a retrospective study. J Cell Mol Med. 2021;25(7):3484–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ayoubkhani D, Khunti K, Nafilyan V, Maddox T, Humberstone B, Diamond I, et al. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. BMJ. 2021;372:n693.

    Article  PubMed  Google Scholar 

  8. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mamtani M, Athavale AM, Abraham M, Vernik J, Amarah AR, Ruiz JP, et al. Association of hyperglycaemia with hospital mortality in nondiabetic COVID-19 patients: a cohort study. Diabetes Metab. 2021;47(3):101254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Montefusco L, Ben Nasr M, D'Addio F, Loretelli C, Rossi A, Pastore I, et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab. 2021;3(6):774–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khunti K, Del Prato S, Mathieu C, Kahn SE, Gabbay RA, Buse JB. COVID-19, hyperglycemia, and new-onset diabetes. Diabetes Care. 2021;44(12):2645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wan L, Gao Q, Deng Y, Ke Y, Ma E, Yang H, et al. GP73 is a glucogenic hormone contributing to SARS-CoV-2-induced hyperglycemia. Nat Metab. 2022;4(1):29–43.

    Article  CAS  PubMed  Google Scholar 

  13. Banerjee A, Czinn SJ, Reiter RJ, Blanchard TG. Crosstalk between endoplasmic reticulum stress and anti-viral activities: a novel therapeutic target for COVID-19. Life Sci. 2020;255:117842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Lorenzo A, Estato V, Castro-Faria-Neto HC, Tibirica E. Obesity-related inflammation and endothelial dysfunction in COVID-19: impact on disease severity. J Inflamm Res. 2021;14:2267–76.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fung TS, Huang M, Liu DX. Coronavirus-induced ER stress response and its involvement in regulation of coronavirus-host interactions. Virus Res. 2014;194:110–23.

    Article  CAS  PubMed  Google Scholar 

  16. He X, Liu C, Peng J, Li Z, Li F, Wang J, et al. COVID-19 induces new-onset insulin resistance and lipid metabolic dysregulation via regulation of secreted metabolic factors. Signal Transduct Target Ther. 2021;6(1):427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shin J, Toyoda S, Nishitani S, Onodera T, Fukuda S, Kita S, et al. SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the lung, liver, adipose tissue, and pancreatic cells via IRF1. Metabolism. 2022;133:155236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daniele G, Guardado Mendoza R, Winnier D, Fiorentino TV, Pengou Z, Cornell J, et al. The inflammatory status score including IL-6, TNF-α, osteopontin, fractalkine, MCP-1 and adiponectin underlies whole-body insulin resistance and hyperglycemia in type 2 diabetes mellitus. Acta Diabetol. 2014;51(1):123–31.

    Article  CAS  PubMed  Google Scholar 

  19. Butcher MJ, Hallinger D, Garcia E, Machida Y, Chakrabarti S, Nadler J, et al. Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes. Diabetologia. 2014;57(3):491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen L, Chen R, Wang H, Liang F. Mechanisms linking inflammation to insulin resistance. Int J Endocrinol. 2015;2015:508409.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193–9.

    Article  CAS  PubMed  Google Scholar 

  23. Gottesman BL, Yu J, Tanaka C, Longhurst CA, Kim JJ. Incidence of new-onset type 1 diabetes among US children during the COVID-19 global pandemic. JAMA Pediatr. 2022;176(4):414–5.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kamrath C, Rosenbauer J, Eckert AJ, Siedler K, Bartelt H, Klose D, et al. Incidence of type 1 diabetes in children and adolescents during the COVID-19 pandemic in Germany: results from the DPV registry. Diabetes Care. 2022;45(8):1762–71.

    Article  CAS  PubMed  Google Scholar 

  25. Kendall EK, Olaker VR, Kaelber DC, Xu R, Davis PB. Association of SARS-CoV-2 infection with new-onset type 1 diabetes among pediatric patients from 2020 to 2021. JAMA Netw Open. 2022;5(9):e2233014.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Steinhart J, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021;3(2):149–65.

    Article  PubMed  Google Scholar 

  27. Wu CT, Lidsky PV, Xiao Y, Lee IT, Cheng R, Nakayama T, et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 2021;33(8):1565–76.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang X, Uhl S, Zhang T, Xue D, Li B, Vandana JJ, et al. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab. 2021;33(8):1577–91.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693–704.

    Google Scholar 

  30. Ruzzin J, Wagman AS, Jensen J. Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia. 2005;48(10):2119–30.

    Article  CAS  PubMed  Google Scholar 

  31. Beaupere C, Liboz A, Fève B, Blondeau B, Guillemain G. Molecular mechanisms of glucocorticoid-induced insulin resistance. Int J Mol Sci. 2021;22(2)

    Google Scholar 

  32. Scott DK, Strömstedt PE, Wang JC, Granner DK. Further characterization of the glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. The role of the glucocorticoid receptor-binding sites. Mol Endocrinol. 1998;12(4):482–91.

    Article  CAS  PubMed  Google Scholar 

  33. Delaunay F, Khan A, Cintra A, Davani B, Ling ZC, Andersson A, et al. Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J Clin Invest. 1997;100(8):2094–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matsumoto K, Yamasaki H, Akazawa S, Sakamaki H, Ishibashi M, Abiru N, et al. High-dose but not low-dose dexamethasone impairs glucose tolerance by inducing compensatory failure of pancreatic beta-cells in normal men. J Clin Endocrinol Metab. 1996;81(7):2621–6.

    CAS  PubMed  Google Scholar 

  35. van Raalte DH, Nofrate V, Bunck MC, van Iersel T, Elassaiss Schaap J, Nässander UK, et al. Acute and 2-week exposure to prednisolone impair different aspects of beta-cell function in healthy men. Eur J Endocrinol. 2010;162(4):729–35.

    Article  PubMed  Google Scholar 

  36. Kuo T, McQueen A, Chen TC, Wang JC. Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol. 2015;872:99–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19—final report. N Engl J Med. 2020;383(19):1813–26.

    Article  CAS  PubMed  Google Scholar 

  38. FDA. FDA Package Insert—VEKLURY (Remdesivir—Gilead, Foster Citya CA).

    Google Scholar 

  39. Sardu C, D'Onofrio N, Balestrieri ML, Barbieri M, Rizzo MR, Messina V, et al. Hyperglycaemia on admission to hospital and COVID-19. Diabetologia. 2020;63(11):2486–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Farzadfar D, Gordon CA, Falsetta KP, Calder T, Tsegaye A, Kohn N, et al. Assessment of insulin infusion requirements in COVID-19-infected patients with diabetic ketoacidosis. Endocr Pract. 2022;28(8):787–94.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stevens JS, Bogun MM, McMahon DJ, Zucker J, Kurlansky P, Mohan S, et al. Diabetic ketoacidosis and mortality in COVID-19 infection. Diabetes Metab. 2021;47(6):101267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldman N, Fink D, Cai J, Lee YN, Davies Z. High prevalence of COVID-19-associated diabetic ketoacidosis in UK secondary care. Diabetes Res Clin Pract. 2020;166:108291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Wang X, Chen J, Zuo X, Zhang H, Deng A. COVID-19 infection may cause ketosis and ketoacidosis. Diabetes Obes Metab. 2020;22(10):1935–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lavik AR, Ebekozien O, Noor N, Alonso GT, Polsky S, Blackman SM, et al. Trends in type 1 diabetic ketoacidosis during COVID-19 surges at 7 US centers: highest burden on non-Hispanic black patients. J Clin Endocrinol Metab. 2022;107(7):1948–55.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Seaborg, E. Over the edge: is COVID-19 introducing a new type of diabetes? Endocrine News. Published May 11 https://endocrinenews.endocrine.org/overthe-edge-is-covid-19-introducing-a-new-type-of-diabetes/; 2021. Accessed 15 Jan 2023.

  46. Cromer SJ, Colling C, Schatoff D, Leary M, Stamou MI, Selen DJ, et al. Newly diagnosed diabetes vs. pre-existing diabetes upon admission for COVID-19: associated factors, short-term outcomes, and long-term glycemic phenotypes. J Diabetes Complicat. 2022;36(4):108145.

    Article  Google Scholar 

  47. Donihi AC, Raval D, Saul M, Korytkowski MT, DeVita MA. Prevalence and predictors of corticosteroid-related hyperglycemia in hospitalized patients. Endocr Pract. 2006;12(4):358–62.

    Article  PubMed  Google Scholar 

  48. Fong AC, Cheung NW. The high incidence of steroid-induced hyperglycaemia in hospital. Diabetes Res Clin Pract. 2013;99(3):277–80.

    Article  CAS  PubMed  Google Scholar 

  49. Delfs N, Struja T, Gafner S, Muri T, Baechli C, Schuetz P, et al. Outcomes of hospitalized patients with glucocorticoid-induced hyperglycemia—a retrospective analysis. J Clin Med. 2020;9(12):4079.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metabol. 2002;87(3):978–82.

    Article  CAS  Google Scholar 

  51. Pomposelli JJ, Baxter JK 3rd, Babineau TJ, Pomfret EA, Driscoll DF, Forse RA, et al. Early postoperative glucose control predicts nosocomial infection rate in diabetic patients. JPEN J Parenter Enteral Nutr. 1998;22(2):77–81.

    Article  CAS  PubMed  Google Scholar 

  52. Asiri AA, Alguwaihes AM, Jammah AA, Alfadda AA, Al-Sofiani ME. Assessment of the effectiveness of a protocol to manage dexamethasone-induced hyperglycemia among hospitalized patients with COVID-19. Endocr Pract. 2021;27(12):1232–41.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Radhakutty A, Stranks JL, Mangelsdorf BL, Drake SM, Roberts GW, Zimmermann AT, et al. Treatment of prednisolone-induced hyperglycaemia in hospitalized patients: insights from a randomized, controlled study. Diabetes Obes Metab. 2017;19(4):571–8.

    Article  CAS  PubMed  Google Scholar 

  54. Khowaja A, Alkhaddo JB, Rana Z, Fish L. Glycemic control in hospitalized patients with diabetes receiving corticosteroids using a neutral protamine Hagedorn insulin protocol: a randomized clinical trial. Diabetes Ther. 2018;9(4):1647–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dhital SM, Shenker Y, Meredith M, Davis DB. A retrospective study comparing neutral protamine Hagedorn insulin with glargine as basal therapy in prednisone-associated diabetes mellitus in hospitalized patients. Endocr Pract. 2012;18(5):712–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Grommesh B, Lausch MJ, Vannelli AJ, Mullen DM, Bergenstal RM, Richter SA, et al. Hospital insulin protocol aims for glucose control in glucocorticoid-induced hyperglycemia. Endocr Pract. 2016;22(2):180–9.

    Article  PubMed  Google Scholar 

  57. Brooks D, Schulman-Rosenbaum R, Griff M, Lester J, Low Wang CC. Glucocorticoid-induced hyperglycemia including dexamethasone-associated hyperglycemia in COVID-19 infection: a systematic review. Endocr Pract. 2022;28(11):1166–77.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gordon C, Kamel B, McKeon L, Brooks D, Schulman-Rosenbaum R. Dexamethasone use and insulin requirements in coronovirus-19 (COVID-19) infection stratified by Hemoglobin A1c. Diabet Epidemiol Manag. 2023;10:100123.

    Article  PubMed  Google Scholar 

  59. Stone AC, Dungan K, Gaborcik JW. Insulin NPH for steroid-induced hyperglycemia: predictors for success. Pharmacother J Human Pharmacol Drug Therapy. 2021;41(10):804–10.

    Article  CAS  Google Scholar 

  60. Korytkowski MT, Muniyappa R, Antinori-Lent K, Donihi AC, Drincic AT, Hirsch IB, et al. Management of hyperglycemia in hospitalized adult patients in non-critical care settings: an endocrine society clinical practice guideline. J Clin Endocrinol Metabol. 2022;107(8):2101–28.

    Article  Google Scholar 

  61. Anindya R, Rutter GA, Meur G. New-onset type 1 diabetes and SARS-CoV-2 infection. Immunol Cell Biol. 2022;

    Google Scholar 

  62. Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, Freeman R, et al. Diabetes care in the hospital: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S244–s53.

    Google Scholar 

  63. U.S. Food & Drug. Coronavirus (COVID-19) update: FDA allows expanded use of devices to monitor patients’ vital signs remotely. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-allows-expanded-use-devices-monitor-patients-vital-signs-remotely2020. Accessed 15 Jan 2023.

  64. Faulds ER, Boutsicaris A, Sumner L, Jones L, McNett M, Smetana KS, et al. Use of continuous glucose monitor in critically ill COVID-19 patients requiring insulin infusion: an observational study. J Clin Endocrinol Metab. 2021;106(10):e4007–e16.

    Article  PubMed  Google Scholar 

  65. Faulds ER, Jones L, McNett M, Smetana KS, May CC, Sumner L, et al. Facilitators and barriers to nursing implementation of continuous glucose monitoring (CGM) in critically ill patients with COVID-19. Endocr Pract. 2021;27(4):354–61.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Spanakis EK, Urrutia A, Galindo RJ, Vellanki P, Migdal AL, Davis G, et al. Continuous glucose monitoring-guided insulin administration in hospitalized patients with diabetes: a randomized clinical trial. Diabetes Care. 2022;45(10):2369–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zilbermint M. The endocrine hospitalist: enhancing the quality of diabetes care. J Diabetes Sci Technol. 2021;15(4):762–7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Demidowich AP, Batty K, Love T, Sokolinsky S, Grubb L, Miller C, et al. Effects of a dedicated inpatient diabetes management service on glycemic control in a community hospital setting. J Diabetes Sci Technol. 2021;15(3):546–52.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mandel SR, Langan S, Mathioudakis NN, Sidhaye AR, Bashura H, Bie JY, et al. Retrospective study of inpatient diabetes management service, length of stay and 30-day readmission rate of patients with diabetes at a community hospital. J Community Hosp Intern Med Perspect. 2019;9(2):64–73.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bansal V, Mottalib A, Pawar TK, Abbasakoor N, Chuang E, Chaudhry A, et al. Inpatient diabetes management by specialized diabetes team versus primary service team in non-critical care units: impact on 30-day readmission rate and hospital cost. BMJ Open Diabetes Res Care. 2018;6(1):e000460.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shelton C, Demidowich AP, Motevalli M, Sokolinsky S, MacKay P, Tucker C, et al. Retrospective quality improvement study of insulin-induced hypoglycemia and implementation of hospital-wide initiatives. J Diabetes Sci Technol. 2021;15:733. https://doi.org/10.1177/19322968211008513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Atiq Khan .

Editor information

Editors and Affiliations

Ethics declarations

 None

Conflict-of-Interest Disclosures

M.Z. reports consulting for EMD Serono and DexCom, Inc.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, S.A., Bhat, S.Z., Zilbermint, M. (2023). Diabetes and COVID-19. In: Schulman-Rosenbaum, R.C. (eds) Diabetes Management in Hospitalized Patients. Contemporary Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-031-44648-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44648-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44647-4

  • Online ISBN: 978-3-031-44648-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics