Skip to main content

Inverse Kinematics for Multisection Continuum Robots with Variable Section Length

  • Conference paper
  • First Online:
Creativity in Intelligent Technologies and Data Science (CIT&DS 2023)

Abstract

Continuum robots are robots with high flexibly and maneuverability, which allows use them in confined workspaces with many obstacles. Continuum robot’s motion planning and control are depends on inverse kinematics. Existing inverse kinematics solvers have high computational cost and often fail to find a solution. Moreover inverse kinematics solutions for continuum robots with variable section length underrepresented as well as solutions for multisection robots with mixed sections. This paper presents a further development of FABRIK-based inverse kinematics algorithm that allows operating? with multisection continuum robots with variable length. The paper presents analytical solution single section with variable length as well. Our experiments show that proposed algorithm show have higher solution rate and lower solution time in comparison with Jacobian-based inverse kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robinson, G., Davies, J.B.C.: Continuum robots – a state of the art. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), pp. 2849–2854. IEEE (2003)

    Google Scholar 

  2. Axinte, D., Dong, X., Palmer, D., et al.: MiRoR—miniaturized robotic systems for holistic in-situ repair and maintenance works in restrained and hazardous environments. IEEE/ASME Trans. Mechatron. 23, 978–981 (2018). https://doi.org/10.1109/TMECH.2018.2800285

    Article  Google Scholar 

  3. Dong, X., Wang, M., Mohammad, A., et al.: Continuum robots collaborate for safe manipulation of high-temperature flame to enable repairs in challenging environments. IEEE/ASME Trans. Mechatron. 27, 4217–4220 (2022). https://doi.org/10.1109/TMECH.2021.3138222

    Article  Google Scholar 

  4. Buckingham, R., Graham, A.: Nuclear snake-arm robots. Ind. Rob. 39, 6–11 (2012). https://doi.org/10.1108/01439911211192448

    Article  Google Scholar 

  5. Nahar, D., Yanik, P.M., Walker, I.D.: Robot tendrils: long, thin continuum robots for inspection in space operations. In: 2017 IEEE Aerospace Conference, pp. 1–8. IEEE (2017)

    Google Scholar 

  6. Liljeback, P., Mills, R.: Eelume: A flexible and subsea resident IMR vehicle. In: OCEANS 2017 – Aberdeen, pp. 1–4. IEEE (2017)

    Google Scholar 

  7. Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31, 1261–1280 (2015). https://doi.org/10.1109/TRO.2015.2489500

    Article  Google Scholar 

  8. Zhang, Y., Lu, M.: A review of recent advancements in soft and flexible robots for medical applications. Int. J. Med. Robot. Comput. Assist. Surg. 16, e2096 (2020). https://doi.org/10.1002/rcs.2096

    Article  Google Scholar 

  9. da Veiga, T., Chandler, J.H., Lloyd, P., et al.: Challenges of continuum robots in clinical context: a review. Prog. Biomed. Eng. 2, 032003 (2020). https://doi.org/10.1088/2516-1091/ab9f41

    Article  Google Scholar 

  10. Nguyen, T.-D., Burgner-Kahrs, J.: A tendon-driven continuum robot with extensible sections. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2130–2135. IEEE (2015)

    Google Scholar 

  11. Li, Z., Chiu, P.W.Y., Du, R.: Design and kinematic modeling of a concentric wire-driven mechanism targeted for minimally invasive surgery. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 310–316. IEEE (2016)

    Google Scholar 

  12. Grassmann, R., Modes, V., Burgner-Kahrs, J.: Learning the forward and inverse kinematics of a 6-DOF concentric tube continuum robot in SE(3). In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5125–5132 (IROS). IEEE (2018)

    Google Scholar 

  13. Lai, J., Huang, K., Chu, H.K.: A learning-based inverse kinematics solver for a multi-segment continuum robot in robot-independent mapping. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 576–582. IEEE (2019)

    Google Scholar 

  14. Melingui, A., Merzouki, R., Mbede, J.B., et al.: Neural networks based approach for inverse kinematic modeling of a compact bionic handling assistant trunk. In: 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1239–1244. IEEE (2014)

    Google Scholar 

  15. Djeffal, S., Mahfoudi, C., Amouri, A.: Comparison of three meta-heuristic algorithms for solving inverse kinematics problems of variable curvature continuum robots. In: 2021 European Conference on Mobile Robots (ECMR), pp. 1–6. IEEE (2021)

    Google Scholar 

  16. Jones, B.A., Walker, I.D.: Kinematics for multisection continuum robots. IEEE Trans. Robot. 22, 43–55 (2006). https://doi.org/10.1109/TRO.2005.861458

    Article  Google Scholar 

  17. Mahl, T., Hildebrandt, A., Sawodny, O.: A variable curvature continuum kinematics for kinematic control of the bionic handling assistant. IEEE Trans. Robot. 30, 935–949 (2014). https://doi.org/10.1109/TRO.2014.2314777

    Article  Google Scholar 

  18. Sears, P., Dupont, P.E.: Inverse kinematics of concentric tube steerable needles. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 1887–1892. IEEE (2007)

    Google Scholar 

  19. Zhang, W., Yang, Z., Dong, T., Xu, K.: FABRIKc: an efficient iterative inverse kinematics solver for continuum robots. In: 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 346–352. IEEE (2018)

    Google Scholar 

  20. Kolpashchikov, D., Laptev, N., Danilov, V., et al.: FABRIK-based inverse kinematics for multi-section continuum robots. In: Proceedings of the 2018 18th International Conference on Mechatronics (2018)

    Google Scholar 

  21. Liu, T., Yang, T., Xu, W., et al.: Efficient inverse kinematics and planning of a hybrid active and passive cable-driven segmented manipulator. IEEE Trans. Syst. Man Cybern. Syst. 52, 4233–4246 (2022). https://doi.org/10.1109/TSMC.2021.3095152

    Article  Google Scholar 

  22. Kolpashchikov, D., Gerget, O., Danilov, V.: FABRIKx: tackling the inverse kinematics problem of continuum robots with variable curvature. Robotics 11, 128 (2022). https://doi.org/10.3390/robotics11060128

    Article  Google Scholar 

  23. Wu, H., Yu, J., Pan, J., et al.: CRRIK: a fast heuristic algorithm for the inverse kinematics of continuum robot. J. Intell. Robot. Syst. 105, 55 (2022). https://doi.org/10.1007/s10846-022-01672-7

    Article  Google Scholar 

  24. Garriga-Casanovas, A., Rodriguez y Baena, F.: Kinematics of continuum robots with constant curvature bending and extension capabilities. J. Mech. Robot. 11, 011010 (2019). https://doi.org/10.1115/1.4041739

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga M. Gerget .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gerget, O.M., Kolpashchikov, D.Y. (2023). Inverse Kinematics for Multisection Continuum Robots with Variable Section Length. In: Kravets, A.G., Shcherbakov, M.V., Groumpos, P.P. (eds) Creativity in Intelligent Technologies and Data Science. CIT&DS 2023. Communications in Computer and Information Science, vol 1909. Springer, Cham. https://doi.org/10.1007/978-3-031-44615-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44615-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44614-6

  • Online ISBN: 978-3-031-44615-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics