Skip to main content

Visual Data Models in Scientific Search for Interpretation of Multiparametric Signals

  • Conference paper
  • First Online:
Creativity in Intelligent Technologies and Data Science (CIT&DS 2023)

Abstract

Modern visualization methods are used to convey information about an object or process and as a tool for search and decision-making process. Data and signals, in analog and digital form, are only valuable if they are analyzed for a specific goal. In this work we etablish the classification of visualization tasks from the point of analyzing heterogeneous multidimensional data, including the case when at the initial stage it is required to formulate a research hypothesis. A classification of visualization metaphors is presented, which is necessary for a conscious choice of tools for visualization and data analysis. This is important for understanding and managing the interpretability of information, the formation of the correct meaning and operational understanding. We demonstrate examples of static and dynamic models of visualization. Based on the semantic model and proposed classification, the principles of visual metaphors formation for solving several applied tasks in various fields of knowledge (oil and gas production, biomedicine, materials science, education, management, etc.) are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tufte, E.R.: The visual display of quantitative Information. The Visual Display of Quantitative Information, 1–191 (2008)

    Google Scholar 

  2. Ware, C.: Foundation for a Science of Data Visualization (2012)

    Google Scholar 

  3. Blascheck, T., John, M., Kurzhals, K., Koch, S., Ertl, T.: VA2: A Visual Analytics Approach for // Evaluating Visual Analytics Applications. IEEE Trans. Vis. Comput. Graph. 22(1), 61–70 (2016)

    Article  Google Scholar 

  4. Purchase, H.C., Andrienko, N., Jankun-Kelly, T.J., Ward, M.: Theoretical foundations of information visualization. Inf. Vis. 4950(4950), 46–64 (2008)

    Google Scholar 

  5. Sacha, D., et al.: Human-centered machine learning through interactive visualization. In: 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 27–29 (2016)

    Google Scholar 

  6. Chen, C.: Top 10 unsolved information visualization problems. IEEE Comput. Graph. Appl. 25(4), 12–16 (2005)

    Article  Google Scholar 

  7. Chen, M., Golan, A.: What may visualization processes optimize? IEEE Trans. Vis. Comput. Graph. 22(12), 2619–2632 (2016)

    Article  Google Scholar 

  8. John, R.: Cognitive Psychology and its Implications 53(9) (2013)

    Google Scholar 

  9. Green, T.M., Ribarsky, W., Fisher, B.: Visual analytics for complex concepts using a human cognition model. In: 2008 IEEE Symposium on Visual Analytics Science and Technology, pp. 91–98 (2008)

    Google Scholar 

  10. Cui, Q., Ward, M.O., Rundensteiner, E.A., Yang, J.: Measuring data abstraction quality in multiresolution visualizations. IEEE Trans. Visual Comput. Graphics 12(5), 709–716 (2006)

    Article  Google Scholar 

  11. Ware, C.: Information Visualization: Perception for Design, 2nd Edition (2004)

    Google Scholar 

  12. Ward, M.O., Theroux, K.J.: Perceptual benchmarking for multivariate data visualization. Sci. Visualiz. Conf. Dagstuhl 1997, 314–321 (1997)

    Article  Google Scholar 

  13. Chen, C., Czeerwinski, M.P.: Empirical evaluation of information visualizations: An introduction. Int. J. Human Comp. Stud. 53(5), 631–635 (2000)

    Article  Google Scholar 

  14. Smith, K., Moriarty, S., Barbatsis, G., Kenney, K.: Handbook of visual communication: theory, methods, and media. Handbook of visual communication: Theory, methods, and media (2005)

    Google Scholar 

  15. Tam, G.K.L., Kothari, V., Chen, M.: An analysis of machine- and human-analytics in classification. IEEE Trans. Vis. Comput. Graph. 23(1), 71–80 (2017)

    Article  Google Scholar 

  16. Elmqvist, N., Yi, J.S.: Patterns for visualization evaluation. Inf. Vis. 14(3), 250–269 (2015)

    Article  Google Scholar 

  17. Lee, S., Kim, S.-H., Hung, Y.-H., Lam, H., Kang, Y., Yi, J.S.: How do people make sense of unfamiliar visualizations?: a grounded model of novice’s information visualization sensemaking. IEEE Trans. Vis. Comput. Graph 22(1), 499–508 (2016)

    Google Scholar 

  18. Groesser, S.N., Schaffernicht, M.: Mental models of dynamic systems: taking stock and looking ahead. Syst. Dyn. Rev. 28(1), 46–68 (2012)

    Article  Google Scholar 

  19. Grudin, J.: Three faces of human-computer interaction. IEEE Ann. Hist. Comput. 27(4), 46–62 (2005)

    Article  MathSciNet  Google Scholar 

  20. Guo, H., Gomez, S.R., Ziemkiewicz, C., Laidlaw, D.H.: A case study using visualization interaction logs and insight metrics to understand how analysts arrive at insights. IEEE Trans. Vis. Comput. Graph 22(1), 51–60 (2016)

    Google Scholar 

  21. Mahyar, N., Tory, M.: Supporting communication and coordination in collaborative sensemaking. IEEE Trans. Vis. Comput. Graph 20(12), 1633–42 (2014)

    Google Scholar 

  22. Pirolli, P.: Information foraging theory: adaptive interaction with information. Information Foraging Theory, 1–28 (2007)

    Google Scholar 

  23. Pirolli, P., Card, S.: The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: Proceedings of International Conference on Intelligence Analysis, vol. 2–4 (2005)

    Google Scholar 

  24. Green, T.M., Ribarsky, W., Fisher, B.: Building and applying a human cognition model for visual analytics. Inf. Vis. 8(1), 1–13 (2009)

    Article  Google Scholar 

  25. Endert, A., North, C., Chang, R., Zhou, M.: Toward usable interactive analytics: coupling cognition and computation. In: KDD 2014 Workshop on Interactive Data Exploration and Analytics (IDEA) (2014). Online: URL http://poloclub.gatech.edu/idea2014/papers/p52-endert.pdf, 30 January 2023

  26. Gorg, C., Kang, Y.A., Liu, Z., Stasko, J.: Visual analytics support for intelligence analysis. Computer (Long Beach Calif) (2013)

    Google Scholar 

  27. Rowley, J.: The wisdom hierarchy: representations of the DIKW hierarchy. J. Inf. Sci. 33(2), 163–180 (2007)

    Article  Google Scholar 

  28. Carpendale, S., et al.: Ontologies in biological data visualization. IEEE Comput. Graph. Appl. 34(2), 8–15 (2014)

    Article  Google Scholar 

  29. Klein, G., Moon, B.: Making sense of sensemaking 2: A macrocognitive model. IEEE Intell. Syst. 21(5), 88–92 (2006)

    Article  Google Scholar 

  30. Klein, G., Moon, B.: Making sense of sensemaking 1: Alternative perspectives. IEEE Intell. Syst. 21(4), 70–73 (2006)

    Article  Google Scholar 

  31. Saraiya, P., North, C., Duca, K.: An insight-based methodology for evaluating bioinformatics visualizations. IEEE Trans. Visual Comput. Graphics 11(4), 443–456 (2005)

    Article  Google Scholar 

  32. Saket, B., Kim, H., Brown, E.T., Endert, A.: Visualization by demonstration: an interaction paradigm for visual data exploration. IEEE Trans. Vis. Comput. Graph. 23(1), 331–340 (2017)

    Article  Google Scholar 

  33. Shklyar, A., Zakharova, A., Vekhter, E., Pak, A.: Visual modeling in an analysis of multidimensional data. J. Phys: Conf. Ser. 5(1), 125–128 (2018)

    Google Scholar 

  34. Klein, G., Phillips, J.K., Rall, E.L., Peluso, D.: A data-frame theory of sensemaking. Expertise Out of Context, 113–155 (2007)

    Google Scholar 

  35. Matsushita, M., Kato, T.: Interactive visualization method for exploratory data analysis. In: Proceedings Fifth International Conference on Information Visualisation, 671–676, (2001)

    Google Scholar 

  36. Dang, N., Yang, F., Xiao, B., Zhu, Y.: WebScope: a new tool for fusion data analysis and visualization. In: 2009 16th IEEE-NPSS Real Time Conference, pp. 141–143 (2009)

    Google Scholar 

  37. Shklyar, A., Zakharova, A., Zavyalov, D., Vekhter, E.: Visual detection of internal patterns in the empirical data. In: CIT&DS 2017: Creativity in intelligent technologies & Data science. 12–14 September, 2017, vol. 754, pp. 215–230. Volgograd, Russia (2017)

    Google Scholar 

  38. Shklyar, A., Zakharova, A.: Facilities of visual analysis while searching for regularities in dissimilar experimental data. In: Infografika i informacionnyj dizajn: vizualizacija dannyh v nauke materialy Mezhdunarodnoj nauchno-prakticheskoj konferencii. Omsk, pp. 61–67 (2017). Online: URL https://elibrary.ru/item.asp?id=32480792, 30 January 2023

  39. Zakharova, A., Shklyar, A.: Visualization metaphors. Scientific Visualization 5(2), 16–24 (2013)

    Google Scholar 

  40. Van Long, T.: A new metric on parallel coordinates and its application for high-dimensional data visualization. In: 2015 International Conference on Advanced Technologies for Communications (ATC), pp. 297–301 (2015)

    Google Scholar 

  41. North, C., Shneiderman, B.: Snap-together visualization: can users construct and operate coordinated visualizations? Int. J. Hum. Comput. Stud. 53(5), 715–739 (2000)

    Article  MATH  Google Scholar 

  42. Branchini, E., Savardi, U., Bianchi, I.: Productive thinking: Tlie role of perception and perceiving opposition. Gestalt Theory 37(1), 7–24 (2015)

    Google Scholar 

  43. Sacha, D., Stoffel, A., Stoffel, F., Kwon, B., Ellis, G., Keim, D.: Knowledge generation model for visual analytics. Visuali. Comp. Graph. IEEE Trans. 20(12), 1 (2014)

    Google Scholar 

  44. Isenberg, P., Isenberg, T., Hesselmann, T., Bongshin Lee, U., von Zadow, T.A.: Data Visualization on Interactive Surfaces: A Research Agenda. IEEE Comput. Graph. Appl. 33(2), 16–24 (2013)

    Google Scholar 

  45. Shklyar, A.V., Zakharova, A.A., Vekhter, E.V.: The applicability of visualization tools in the meta-design of an educational environment. European J. Contemp. Edu. 8(1), 43–51 (2019)

    Google Scholar 

  46. Batch, A., Elmqvist, N.: The interactive visualization gap in initial exploratory data analysis. IEEE Trans. Vis. Comput. Graph. 24(1), 278–287 (2018)

    Google Scholar 

  47. Zakharova, A.A., Vekhter, E.V., Shklyar, A.V.: Methods of solving problems of data analysis using analytical visual models 9(4), 78–88 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena Zakharova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zakharova, A., Shklyar, A., Vekhter, E. (2023). Visual Data Models in Scientific Search for Interpretation of Multiparametric Signals. In: Kravets, A.G., Shcherbakov, M.V., Groumpos, P.P. (eds) Creativity in Intelligent Technologies and Data Science. CIT&DS 2023. Communications in Computer and Information Science, vol 1909. Springer, Cham. https://doi.org/10.1007/978-3-031-44615-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44615-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44614-6

  • Online ISBN: 978-3-031-44615-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics